Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria.
Max Planck Institute for Molecular Cell Biology and Genetics, 108 Pfotenhauerstr., 01307 Dresden, Germany.
Mol Cell. 2018 Mar 15;69(6):1046-1061.e5. doi: 10.1016/j.molcel.2018.02.016.
A single mutagen can generate multiple different types of DNA lesions. How different repair pathways cooperate in complex DNA lesions, however, remains largely unclear. Here we measured, clustered, and modeled the kinetics of recruitment and dissociation of 70 DNA repair proteins to laser-induced DNA damage sites in HeLa cells. The precise timescale of protein recruitment reveals that error-prone translesion polymerases are considerably delayed compared to error-free polymerases. We show that this is ensured by the delayed recruitment of RAD18 to double-strand break sites. The time benefit of error-free polymerases disappears when PARP inhibition significantly delays PCNA recruitment. Moreover, removal of PCNA from complex DNA damage sites correlates with RPA loading during 5'-DNA end resection. Our systematic study of the dynamics of DNA repair proteins in complex DNA lesions reveals the multifaceted coordination between the repair pathways and provides a kinetics-based resource to study genomic instability and anticancer drug impact.
一个单一的诱变剂可以产生多种不同类型的 DNA 损伤。然而,不同的修复途径如何在复杂的 DNA 损伤中协同作用,在很大程度上仍不清楚。在这里,我们测量、聚类并模拟了 70 种 DNA 修复蛋白在 HeLa 细胞中激光诱导的 DNA 损伤部位的募集和解离动力学。蛋白质募集的精确时间尺度表明,与无差错聚合酶相比,易错跨损伤聚合酶明显延迟。我们表明,这是通过 RAD18 对双链断裂部位的延迟募集来保证的。当 PARP 抑制显著延迟 PCNA 募集时,无差错聚合酶的时间优势就会消失。此外,从复杂的 DNA 损伤部位去除 PCNA 与 5'-DNA 末端切除过程中的 RPA 加载相关。我们对复杂 DNA 损伤中 DNA 修复蛋白动力学的系统研究揭示了修复途径之间的多方面协调,并提供了一个基于动力学的资源来研究基因组不稳定性和抗癌药物的影响。