Reinken Henning, Klapp Sabine H L, Bär Markus, Heidenreich Sebastian
Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany.
Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestr. 2-12, 10587 Berlin, Germany.
Phys Rev E. 2018 Feb;97(2-1):022613. doi: 10.1103/PhysRevE.97.022613.
In this paper, we systematically derive a fourth-order continuum theory capable of reproducing mesoscale turbulence in a three-dimensional suspension of microswimmers. We start from overdamped Langevin equations for a generic microscopic model (pushers or pullers), which include hydrodynamic interactions on both small length scales (polar alignment of neighboring swimmers) and large length scales, where the solvent flow interacts with the order parameter field. The flow field is determined via the Stokes equation supplemented by an ansatz for the stress tensor. In addition to hydrodynamic interactions, we allow for nematic pair interactions stemming from excluded-volume effects. The results here substantially extend and generalize earlier findings [S. Heidenreich et al., Phys. Rev. E 94, 020601 (2016)2470-004510.1103/PhysRevE.94.020601], in which we derived a two-dimensional hydrodynamic theory. From the corresponding mean-field Fokker-Planck equation combined with a self-consistent closure scheme, we derive nonlinear field equations for the polar and the nematic order parameter, involving gradient terms of up to fourth order. We find that the effective microswimmer dynamics depends on the coupling between solvent flow and orientational order. For very weak coupling corresponding to a high viscosity of the suspension, the dynamics of mesoscale turbulence can be described by a simplified model containing only an effective microswimmer velocity.
在本文中,我们系统地推导了一种能够在微游动体的三维悬浮液中再现中尺度湍流的四阶连续介质理论。我们从一个通用微观模型(推进器或拉拽器)的过阻尼朗之万方程出发,该方程包含了小长度尺度(相邻游动体的极性排列)和大长度尺度上的流体动力相互作用,其中溶剂流与序参量场相互作用。流场通过斯托克斯方程并辅以应力张量的假设来确定。除了流体动力相互作用外,我们还考虑了由排除体积效应引起的向列型对相互作用。这里的结果极大地扩展和推广了早期的研究结果[S. 海登赖希等人,《物理评论E》94,020601(2016)2470 - 004510.1103/PhysRevE.94.020601],在该研究中我们推导了一个二维流体动力学理论。从相应的平均场福克 - 普朗克方程结合自洽封闭方案,我们推导出了极性和向列型序参量的非线性场方程,其中涉及高达四阶的梯度项。我们发现有效的微游动体动力学取决于溶剂流和取向序之间的耦合。对于对应于悬浮液高粘度的非常弱的耦合,中尺度湍流的动力学可以用一个仅包含有效微游动体速度的简化模型来描述。