Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009, China.
Phys Rev E. 2018 Feb;97(2-1):022107. doi: 10.1103/PhysRevE.97.022107.
We study critical bond percolation on a seven-dimensional hypercubic lattice with periodic boundary conditions (7D) and on the complete graph (CG) of finite volume (number of vertices) V. We numerically confirm that for both cases, the critical number density n(s,V) of clusters of size s obeys a scaling form n(s,V)∼s^{-τ}nover ̃ with identical volume fractal dimension d_{f}^{}=2/3 and exponent τ=1+1/d_{f}^{}=5/2. We then classify occupied bonds into bridge bonds, which includes branch and junction bonds, and nonbridge bonds; a bridge bond is a branch bond if and only if its deletion produces at least one tree. Deleting branch bonds from percolation configurations produces leaf-free configurations, whereas deleting all bridge bonds leads to bridge-free configurations composed of blobs. It is shown that the fraction of nonbridge (biconnected) bonds vanishes, ρ_{n,CG}→0, for large CGs, but converges to a finite value, ρ_{n,7D}=0.0061931(7), for the 7D hypercube. Further, we observe that while the bridge-free dimension d_{bf}^{}=1/3 holds for both the CG and 7D cases, the volume fractal dimensions of the leaf-free clusters are different: d_{lf,7D}^{}=0.669(9)≈2/3 and d_{lf,CG}^{}=0.3337(17)≈1/3. On the CG and in 7D, the whole, leaf-free, and bridge-free clusters all have the shortest-path volume fractal dimension d_{min}^{}≈1/3, characterizing their graph diameters. We also study the behavior of the number and the size distribution of leaf-free and bridge-free clusters. For the number of clusters, we numerically find the number of leaf-free and bridge-free clusters on the CG scale as ∼lnV, while for 7D they scale as ∼V. For the size distribution, we find the behavior on the CG is governed by a modified Fisher exponent τ^{'}=1, while for leaf-free clusters in 7D, it is governed by Fisher exponent τ=5/2. The size distribution of bridge-free clusters in 7D displays two-scaling behavior with exponents τ=4 and τ^{'}=1. The probability distribution P(C_{1},V)dC_{1} of the largest cluster of size C_{1} for whole percolation configurations is observed to follow a single-variable function Pover ¯dx, with x≡C_{1}/V^{d_{f}^{*}} for both CG and 7D. Up to a rescaling factor for the variable x, the probability functions for CG and 7D collapse on top of each other within the entire range of x. The analytical expressions in the x→0 and x→∞ limits are further confirmed. Our work demonstrates that the geometric structure of high-dimensional percolation clusters cannot be fully accounted for by their complete-graph counterparts.
我们研究了具有周期性边界条件的七维超立方晶格(7D)和有限体积(顶点数)V 的完全图(CG)上的关键键渗流。我们通过数值确认,对于这两种情况,大小为 s 的团簇的临界密度 n(s,V) 服从标度形式 n(s,V)∼s^{-τ}nover ̃,其中体积分形维数 d_{f}^{}=2/3,指数 τ=1+1/d_{f}^{}=5/2。然后,我们将占据的键分类为桥键,包括分支键和结键,以及非桥键;桥键是分支键,当且仅当删除它会产生至少一个树。从渗流配置中删除分支键会产生无叶配置,而删除所有桥键会导致由斑点组成的无桥配置。结果表明,非桥(双连通)键的分数 ρ_{n,CG}→0,对于大的 CG,但对于 7D 超立方体收敛到有限值 ρ_{n,7D}=0.0061931(7)。此外,我们观察到,虽然桥自由维度 d_{bf}^{}=1/3 适用于 CG 和 7D 情况,但无叶簇的体积分形维度不同:d_{lf,7D}^{}=0.669(9)≈2/3 和 d_{lf,CG}^{}=0.3337(17)≈1/3。在 CG 和 7D 中,整体、无叶和无桥簇都具有最短路径体积分形维度 d_{min}^{}≈1/3,这反映了它们的图直径。我们还研究了无叶和无桥簇的数量和大小分布的行为。对于簇的数量,我们在数值上发现 CG 上的无叶和无桥簇的数量为 ∼lnV,而在 7D 中,它们的数量为 ∼V。对于大小分布,我们发现 CG 的行为由修正的 Fisher 指数 τ^{'}=1 控制,而对于 7D 中的无叶簇,它由 Fisher 指数 τ=5/2 控制。7D 中无桥簇的大小分布显示出具有指数 τ=4 和 τ^{'}=1 的双标度行为。对于整体渗流配置中最大簇的大小 C_{1},我们观察到 C_{1}的概率分布 P(C_{1},V)dC_{1}遵循单个变量函数 Pover ¯dx,对于 CG 和 7D,x≡C_{1}/V^{d_{f}^{*}}。在变量 x 的缩放因子内,CG 和 7D 的概率函数在整个 x 范围内相互重叠。进一步证实了在 x→0 和 x→∞极限下的解析表达式。我们的工作表明,高维渗流簇的几何结构不能完全由它们的完全图对应物来解释。