Suppr超能文献

超越渗流簇结构中的斑点:渗流阈值处三单元组的分布。

Beyond blobs in percolation cluster structure: the distribution of 3-blocks at the percolation threshold.

作者信息

Paul Gerald, Stanley H Eugene

机构信息

Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 2):056126. doi: 10.1103/PhysRevE.65.056126. Epub 2002 May 20.

Abstract

The incipient infinite cluster appearing at the bond percolation threshold can be decomposed into singly connected "links" and multiply connected "blobs." Here we decompose blobs into objects known in graph theory as 3-blocks. A 3-block is a graph that cannot be separated into disconnected subgraphs by cutting the graph at two or fewer vertices. Clusters, blobs, and 3-blocks are special cases of k-blocks with k=1, 2, and 3, respectively. We study bond percolation clusters at the percolation threshold on two-dimensional (2D) square lattices and three-dimensional cubic lattices and, using Monte Carlo simulations, determine the distribution of the sizes of the 3-blocks into which the blobs are decomposed. We find that the 3-blocks have fractal dimension d(3)=1.2+/-0.1 in 2D and 1.15+/-0.1 in 3D. These fractal dimensions are significantly smaller than the fractal dimensions of the blobs, making possible more efficient calculation of percolation properties. Additionally, the closeness of the estimated values for d(3) in 2D and 3D is consistent with the possibility that d(3) is dimension independent. Generalizing the concept of the backbone, we introduce the concept of a "k-bone," which is the set of all points in a percolation system connected to k disjoint terminal points (or sets of disjoint terminal points) by k disjoint paths. We argue that the fractal dimension of a k-bone is equal to the fractal dimension of k-blocks, allowing us to discuss the relation between the fractal dimension of k-blocks and recent work on path crossing probabilities.

摘要

在键渗流阈值处出现的初始无限簇可分解为单连通的“链节”和多连通的“团块”。在这里,我们将团块分解为图论中已知的称为3 - 块的对象。一个3 - 块是一个不能通过在两个或更少顶点处切割图而分离成不相连子图的图。簇、团块和3 - 块分别是k = 1、2和3时k - 块的特殊情况。我们研究二维(2D)正方形晶格和三维立方晶格上渗流阈值处的键渗流簇,并使用蒙特卡罗模拟确定团块分解成的3 - 块的大小分布。我们发现,在二维中3 - 块的分形维数d(3)=1.2±0.1,在三维中为1.15±0.1。这些分形维数明显小于团块的分形维数,使得渗流性质的计算更有效。此外,二维和三维中d(3)估计值的接近性与d(3)与维度无关的可能性一致。推广骨干的概念,我们引入“k - 骨干”的概念,它是渗流系统中通过k条不相交路径连接到k个不相交端点(或不相交端点集)的所有点的集合。我们认为k - 骨干的分形维数等于k - 块的分形维数,这使我们能够讨论k - 块的分形维数与最近关于路径交叉概率的工作之间的关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验