Suppr超能文献

物候变化如何影响物种扩散速度。

How Phenological Variation Affects Species Spreading Speeds.

机构信息

Department of Mathematics, University of Louisville, Louisville, KY, 40292, USA.

Department of Biology, University of Maryland, College Park, MD, 20742, USA.

出版信息

Bull Math Biol. 2018 Jun;80(6):1476-1513. doi: 10.1007/s11538-018-0409-3. Epub 2018 Mar 16.

Abstract

In this paper, we develop a phenologically explicit reaction-diffusion model to analyze the spatial spread of a univoltine insect species. Our model assumes four explicit life stages: adult, two larval, and pupa, with a fourth, implicit, egg stage modeled as a time delay between oviposition and emergence as a larva. As such, our model is broadly applicable to holometabolous insects. To account for phenology (seasonal biological timing), we introduce four time-dependent phenological functions describing adult emergence, oviposition and larval conversion, respectively. Emergence is defined as the per-capita probability of an adult emerging from the pupal stage at a particular time. Oviposition is defined as the per-capita rate of adult egg deposition at a particular time. Two functions deal with the larva stage 1 to larva stage 2, and larva stage 2 to pupa conversion as per-capita rate of conversion at a particular time. This very general formulation allows us to accommodate a wide variety of alternative insect phenologies and lifestyles. We provide the moment-generating function for the general linearized system in terms of phenological functions and model parameters. We prove that the spreading speed of the linearized system is the same as that for nonlinear system. We then find explicit solutions for the spreading speed of the insect population for the limiting cases where (1) emergence and oviposition are impulsive (i.e., take place over an extremely narrow time window), larval conversion occurs at a constant rate, and larvae are immobile, (2) emergence and oviposition are impulsive (i.e., take place over an extremely narrow time window), larval conversion occurs at a constant rate starting at a delayed time from egg hatch, and larvae are immobile, and (3) emergence, oviposition, and larval conversion are impulsive. To consider other biological scenarios, including cases with emergence and oviposition windows of finite width as well as mobile larvae, we use numerical simulations. Our results provide a framework for understanding how phenology can interact with spatial spread to facilitate (or hinder) species expansion. This is an important area of research within the context of global change, which brings both new invasive species and range shifts for native species, all the while causing perturbations to species phenology that may impact the abilities of native and invasive populations to spread.

摘要

在本文中,我们开发了一个具有明确物候学的反应扩散模型,以分析一种单化性昆虫物种的空间传播。我们的模型假设了四个明确的生命阶段:成虫、两个幼虫和蛹,第四个隐含的卵阶段被建模为卵产下到幼虫孵化之间的时间延迟。因此,我们的模型广泛适用于完全变态昆虫。为了考虑物候学(季节性生物时间),我们引入了四个时间相关的物候函数,分别描述成虫的出现、产卵和幼虫转化。成虫的出现定义为特定时间内从蛹期出现成虫的个体比例。产卵定义为特定时间内成虫产卵的个体比例。两个函数处理幼虫阶段 1 到幼虫阶段 2,以及幼虫阶段 2 到蛹的转化,转化速度为特定时间内的个体比例。这种非常通用的公式允许我们适应各种替代的昆虫物候学和生活方式。我们以物候函数和模型参数的形式为一般线性化系统提供了矩生成函数。我们证明线性化系统的扩散速度与非线性系统的扩散速度相同。然后,我们为昆虫种群的扩散速度找到了显式解,这些解适用于以下几种极限情况:(1)成虫的出现和产卵是脉冲的(即在极窄的时间窗口内发生),幼虫的转化以恒定的速度发生,并且幼虫是不动的;(2)成虫的出现和产卵是脉冲的(即在极窄的时间窗口内发生),幼虫的转化以从卵孵化开始的延迟时间开始以恒定的速度发生,并且幼虫是不动的;(3)成虫、产卵和幼虫的转化是脉冲的。为了考虑其他生物学场景,包括成虫和产卵窗口具有有限宽度以及幼虫是移动的情况,我们使用数值模拟。我们的结果为理解物候学如何与空间传播相互作用以促进(或阻碍)物种扩张提供了一个框架。这是全球变化背景下的一个重要研究领域,它带来了新的入侵物种和本地物种的分布范围变化,同时对物种物候学造成干扰,这可能会影响本地和入侵种群的传播能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验