Cai Bin, Green Olga L, Kashani Rojano, Rodriguez Vivian L, Mutic Sasa, Yang Deshan
Department of Radiation Oncology, Washington University, St. Louis, MO 63110, USA.
Department of Radiation Oncology, University of Michigan, Ann Abor, MI, 48109, USA.
Z Med Phys. 2018 Aug;28(3):211-223. doi: 10.1016/j.zemedi.2018.02.002. Epub 2018 Mar 14.
The fast evolution of technology in radiotherapy (RT) enabled the realization of adaptive radiotherapy (ART). However, the new characteristics of ART pose unique challenges for efficiencies and effectiveness of quality assurance (QA) strategies. In this paper, we discuss the necessary QAs for ART and introduce a practical implementation. A previously published work on failure modes and effects analysis (FMEA) of ART is introduced first to explain the risks associated with ART sub-processes. After a brief discussion of QA challenges, we review the existing QA strategies and tools that might be suitable for each ART step. By introducing the MR-guided online ART QA processes developed at our institute, we demonstrate a practical implementation. The limitations and future works to develop more robust and efficient QA strategies are discussed at the end.
放射治疗(RT)技术的快速发展促成了自适应放射治疗(ART)的实现。然而,ART的新特性给质量保证(QA)策略的效率和有效性带来了独特挑战。在本文中,我们讨论了ART所需的QA,并介绍了一种实际的实施方案。首先介绍了先前发表的关于ART的失效模式与效应分析(FMEA)的工作,以解释与ART子过程相关的风险。在简要讨论QA挑战之后,我们回顾了可能适用于每个ART步骤的现有QA策略和工具。通过介绍我们研究所开发的磁共振引导在线ART QA流程,我们展示了一种实际的实施方案。最后讨论了开发更强大、高效的QA策略的局限性和未来工作。