Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Ontario, Canada.
Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
J Appl Clin Med Phys. 2023 May;24(5):e13916. doi: 10.1002/acm2.13916. Epub 2023 Feb 10.
Adaptive radiation therapy (ART) on the integrated Elekta Unity magnetic resonance (MR)-linac requires routine quality assurance to verify delivery accuracy and system data transfer. In this work, our objective was to develop and validate a novel automated end-to-end test suite that verifies data transfer between multiple software platforms and quantifies the performance of multiple machine subcomponents critical to the ART process.
We designed and implemented a software tool to quantify the MR and megavoltage (MV) isocenter coincidence, treatment couch positioning consistency, isocenter shift accuracy for the adapted plan as well as the MLC and jaw position accuracy following the beam aperture adaptation. Our tool employs a reference treatment plan with a simulated isocenter shift generated on an MR image of a readily available phantom with MR and MV visible fiducials. Execution of the test occurs within the standard adapt-to-position (ATP) clinical workflow with MV images collected of the delivered treatment fields. Using descriptive statistics, we quantified uncertainty in couch positioning, isocentre shift as well as the jaw and MLC positions of the adapted fields. We also executed sensitivity measurements to evaluate the detection algorithm's performance.
We report the results of 301 daily testing instances. We demonstrated consistent tracking of the MR-to-MV alignment with respect to the established value and to detect small changes on the order of 0.2 mm following machine service events. We found couch position consistency relative to the test baseline value was within 95% CI [-0.31, 0.26 mm]. For phantom shifts that form the basis for the plan adaptation, we found agreement between MV-image-detected phantom shift and online image registration, within ± 1.5 mm in all directions with a 95% CI difference of [-1.29, 0.79 mm]. For beam aperture adaptation accuracy, we found differences between the planned and detected jaw positions had a mean value of 0.27 mm and 95% CI of [-0.29, 0.82 mm] and -0.17 mm and 95% CI of [-0.37, 0.05 mm] for the MLC positions. Automated fiducial detected accuracy was within 0.08 ± 0.20 mm of manual localization. Introduced jaw and MLC position errors (1-10 mm) were detected within 0.55 mm (within 1 mm for 15/256 instances for the jaws). Phantom shifts (1.3 or 5 mm in each cardinal direction) from a reference position were detected within 0.26 mm.
We have demonstrated the accuracy and sensitivity of a daily end-to-end test suite capable of detecting errors in multiple machine subcomponents including system data transfer. Our test suite evaluates the entire treatment workflow and has captured system communication issues prior to patient treatment. With automated processing and the use of a standard vendor-provided phantom, it is possible to expand to other Unity sites.
在集成 Elekta Unity 磁共振(MR)-直线加速器上进行自适应放射治疗(ART)需要常规的质量保证,以验证交付的准确性和系统数据传输。在这项工作中,我们的目标是开发和验证一种新的自动化端到端测试套件,该套件可以验证多个软件平台之间的数据传输,并量化对 ART 过程至关重要的多个机器子组件的性能。
我们设计并实现了一种软件工具,用于量化 MR 和兆伏(MV)等中心重合度、治疗床定位一致性、适应计划的等中心移位精度以及光束孔径适应后的叶片和扇形准直器位置精度。我们的工具采用了一个参考治疗计划,该计划在一个带有 MR 和 MV 可见基准的现成体模的 MR 图像上生成了一个模拟等中心移位。测试的执行是在标准的适应位置(ATP)临床工作流程内进行的,其中采集了交付的治疗场的 MV 图像。使用描述性统计,我们量化了治疗床定位、等中心移位以及适应场的叶片和扇形准直器位置的不确定性。我们还进行了敏感性测量,以评估检测算法的性能。
我们报告了 301 个日常测试实例的结果。我们证明了对建立的 MR 与 MV 对准的一致跟踪,并能够检测到机器服务事件后约 0.2mm 的小变化。我们发现相对于测试基线值,治疗床位置的一致性在 95%置信区间内[-0.31,0.26mm]。对于构成计划适应基础的体模移位,我们发现 MV 图像检测到的体模移位与在线图像配准之间的一致性,在所有方向上均为±1.5mm,95%置信区间差异为[-1.29,0.79mm]。对于光束孔径适应精度,我们发现计划和检测到的叶片位置之间的差异平均值为 0.27mm,95%置信区间为[-0.29,0.82mm],95%置信区间为[-0.17,0.05mm]。自动基准点检测精度在手动定位的 0.08±0.20mm 以内。引入的叶片和扇形准直器位置误差(1-10mm)在 0.55mm 内被检测到(对于 256 个实例中的 15 个,误差在 1mm 以内)。从参考位置的体模移位(每个方位各 1.3 或 5mm)在 0.26mm 内被检测到。
我们已经证明了一种日常端到端测试套件的准确性和敏感性,该套件能够检测多个机器子组件(包括系统数据传输)中的误差。我们的测试套件评估了整个治疗工作流程,并在患者治疗前捕获了系统通信问题。通过自动化处理和使用标准供应商提供的体模,有可能扩展到其他 Unity 站点。