Medical University of South Carolina, Charleston, SC, United States.
Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
Adv Cancer Res. 2018;138:41-69. doi: 10.1016/bs.acr.2018.02.002. Epub 2018 Mar 2.
Cancer metabolism is emerging as a chemotherapeutic target. Enhanced glycolysis and suppression of mitochondrial metabolism characterize the Warburg phenotype in cancer cells. The flux of respiratory substrates, ADP, and Pi into mitochondria and the release of mitochondrial ATP to the cytosol occur through voltage-dependent anion channels (VDACs) located in the mitochondrial outer membrane. Catabolism of respiratory substrates in the Krebs cycle generates NADH and FADH that enter the electron transport chain (ETC) to generate a proton motive force that maintains mitochondrial membrane potential (ΔΨ) and is utilized to generate ATP. The ETC is also the major cellular source of mitochondrial reactive oxygen species (ROS). αβ-Tubulin heterodimers decrease VDAC conductance in lipid bilayers. High constitutive levels of cytosolic free tubulin in intact cancer cells close VDAC decreasing mitochondrial ΔΨ and mitochondrial metabolism. The VDAC-tubulin interaction regulates VDAC opening and globally controls mitochondrial metabolism, ROS formation, and the intracellular flow of energy. Erastin, a VDAC-binding molecule lethal to some cancer cell types, and erastin-like compounds identified in a high-throughput screening antagonize the inhibitory effect of tubulin on VDAC. Reversal of tubulin inhibition of VDAC increases VDAC conductance and the flux of metabolites into and out of mitochondria. VDAC opening promotes a higher mitochondrial ΔΨ and a global increase in mitochondrial metabolism leading to high cytosolic ATP/ADP ratios that inhibit glycolysis. VDAC opening also increases ROS production causing oxidative stress that, in turn, leads to mitochondrial dysfunction, bioenergetic failure, and cell death. In summary, antagonism of the VDAC-tubulin interaction promotes cell death by a "double-hit model" characterized by reversion of the proproliferative Warburg phenotype (anti-Warburg) and promotion of oxidative stress.
癌症代谢正成为一种化疗靶点。增强的糖酵解和抑制线粒体代谢是癌细胞中沃伯格表型的特征。呼吸底物、ADP 和 Pi 流入线粒体以及线粒体 ATP 释放到细胞质是通过位于线粒体外膜上的电压依赖性阴离子通道 (VDAC) 实现的。三羧酸循环中呼吸底物的分解代谢产生 NADH 和 FADH,它们进入电子传递链 (ETC) 产生质子动力,维持线粒体膜电位 (ΔΨ),并用于生成 ATP。ETC 也是线粒体活性氧 (ROS) 的主要细胞来源。αβ-微管蛋白异二聚体降低脂质双层中的 VDAC 电导率。完整癌细胞中细胞溶质游离微管蛋白的高组成型水平关闭 VDAC,降低线粒体 ΔΨ 和线粒体代谢。VDAC-微管蛋白相互作用调节 VDAC 的开放,并全局控制线粒体代谢、ROS 形成和能量的细胞内流动。Erastin 是一种与某些癌细胞类型致死的 VDAC 结合分子,在高通量筛选中鉴定的 Erastin 样化合物拮抗微管蛋白对 VDAC 的抑制作用。微管蛋白抑制 VDAC 的逆转增加了 VDAC 的电导率和代谢物进出线粒体的通量。VDAC 的开放促进了更高的线粒体 ΔΨ 和全局增加的线粒体代谢,导致高细胞溶质 ATP/ADP 比,抑制糖酵解。VDAC 的开放也增加了 ROS 的产生,导致氧化应激,反过来又导致线粒体功能障碍、生物能衰竭和细胞死亡。总之,VDAC-微管蛋白相互作用的拮抗通过“双重打击模型”促进细胞死亡,其特征是逆转促增殖的沃伯格表型 (反沃伯格) 和促进氧化应激。