Junco Milagros, Ventura Clara, Santiago Valtierra Florencia Ximena, Maldonado Eduardo Nestor
Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
Virology Laboratory, Tandil Veterinary Research Center (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil B7000, Argentina.
Antioxidants (Basel). 2024 Dec 19;13(12):1563. doi: 10.3390/antiox13121563.
Cancer metabolism is sustained both by enhanced aerobic glycolysis, characteristic of the Warburg phenotype, and oxidative metabolism. Cell survival and proliferation depends on a dynamic equilibrium between mitochondrial function and glycolysis, which is heterogeneous between tumors and even within the same tumor. During oxidative phosphorylation, electrons from NADH and FADH originated in the tricarboxylic acid cycle flow through complexes of the electron transport chain. Single electron leaks at specific complexes of the electron transport chain generate reactive oxygen species (ROS). ROS are a concentration-dependent double-edged sword that plays multifaceted roles in cancer metabolism. ROS serve either as signaling molecules favoring cellular homeostasis and proliferation or damage DNA, protein and lipids, causing cell death. Several aspects of ROS biology still remain unsolved. Among the unknowns are the actual levels at which ROS become cytotoxic and if toxicity depends on specific ROS species or if it is caused by a cumulative effect of all of them. In this review, we describe mechanisms of mitochondrial ROS production, detoxification, ROS-induced cytotoxicity, and the use of antioxidants in cancer treatment. We also provide updated information about critical questions on the biology of ROS on cancer metabolism and discuss dogmas that lack adequate experimental demonstration. Overall, this review brings a comprehensive perspective of ROS as drivers of cancer progression, inducers of cell death, and the potential use of antioxidants as anticancer therapy.
癌症代谢既由增强的有氧糖酵解(即瓦伯格表型的特征)维持,也由氧化代谢维持。细胞存活和增殖取决于线粒体功能与糖酵解之间的动态平衡,这种平衡在肿瘤之间甚至同一肿瘤内部都是异质性的。在氧化磷酸化过程中,来自三羧酸循环的NADH和FADH的电子流经电子传递链的复合物。电子传递链特定复合物处的单电子泄漏会产生活性氧(ROS)。ROS是一种浓度依赖性的双刃剑,在癌症代谢中发挥多方面作用。ROS既可以作为有利于细胞稳态和增殖的信号分子,也可以损伤DNA、蛋白质和脂质,导致细胞死亡。ROS生物学的几个方面仍然未得到解决。未知的是ROS成为细胞毒性物质的实际水平,以及毒性是否取决于特定的ROS种类,或者是否由它们所有的累积效应引起。在这篇综述中,我们描述了线粒体ROS产生、解毒、ROS诱导的细胞毒性以及抗氧化剂在癌症治疗中的应用机制。我们还提供了有关ROS在癌症代谢生物学方面关键问题的最新信息,并讨论了缺乏充分实验证明的教条。总体而言,这篇综述全面阐述了ROS作为癌症进展驱动因素、细胞死亡诱导剂以及抗氧化剂作为抗癌疗法潜在用途的情况。