Ecological Chemistry Laboratory, Center for Excellence in Biotechnology Research Applied to the Environment (CIBAMA, for its acronyn in Spanish), Faculty of Engineering and Science, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile; Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile.
Ecological Chemistry Laboratory, Center for Excellence in Biotechnology Research Applied to the Environment (CIBAMA, for its acronyn in Spanish), Faculty of Engineering and Science, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile; Department of Chemical Sciences and Natural Resources, Faculty of Engineering and Science, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile.
Microbiol Res. 2018 Mar;208:63-75. doi: 10.1016/j.micres.2018.01.002. Epub 2018 Jan 31.
Agricultural practices require novel products that allow sustainable development and commercial production according to the needs of farmers and consumers. Therefore, in the last decade, eco-friendly alternatives have been studied, so volatile organic compounds (VOCs) emitted by microorganisms have emerged as a cheaper, effective, efficient, and an eco-friendly alternative. VOCs are lipophilic compounds derived from microbial metabolic pathways with low molecular weight (<300 g mol), low boiling point, and high vapor pressure that allow them to act as signal molecules over short and long distances. Main case studies provide evidence that VOCs released from diverse microorganisms (i.e. Bacillus, Pseudomonas, Arthrobacter, Fusarium, and Alternaria) can stimulate growth on a specific "target" seedling, such as Arabidopsis and tobacco. Some identified compounds, such as 3-hydroxy-2-butanone (acetoin), 2,3-butanediol, 2-pentylfuran, or dimethylhexadecylmine have shown their ability to elicit growth at root or leaf level. Few studies indicate that VOCs act in the regulation at phytohormone, metabolic pathways and nutrition levels according to genetic, proteomic, and metabolic analyses; but action mechanisms associated with growth-inducing activity are poorly understood. In this work, we reviewed case studies regarding identified compounds and action mechanisms for a better understanding of the information collected so far. Additionally, a brief description about the effects of VOCs for induction of resistance and tolerance in plants are presented, where compounds such as acetoin, dimethyl disulfide, 3-pentanol and 6-pentyl-α-pyrone have been reported. Furthermore, we summarized the knowledge to direct future studies that propose microbial VOCs as a technological innovation in agriculture and horticulture.
农业实践需要新型产品,以根据农民和消费者的需求实现可持续发展和商业生产。因此,在过去十年中,人们研究了环保替代品,因此微生物排放的挥发性有机化合物 (VOC) 作为一种更便宜、有效、高效且环保的替代品而出现。VOC 是源自微生物代谢途径的亲脂性化合物,分子量低(<300 g mol)、沸点低、蒸气压高,使其能够作为短距离和长距离的信号分子发挥作用。主要案例研究提供的证据表明,来自多种微生物(即芽孢杆菌、假单胞菌、节杆菌、镰刀菌和链格孢菌)的 VOC 可以刺激特定“靶”幼苗(如拟南芥和烟草)的生长。一些已鉴定的化合物,如 3-羟基-2-丁酮(乙酰丁酮)、2,3-丁二醇、2-戊基呋喃或二甲基十六胺,已显示出它们在根或叶水平上诱导生长的能力。少数研究表明,根据遗传、蛋白质组学和代谢分析,VOC 作用于植物激素、代谢途径和营养水平的调节;但与诱导生长活性相关的作用机制尚不清楚。在这项工作中,我们综述了关于已鉴定化合物和作用机制的案例研究,以更好地了解迄今为止收集的信息。此外,还介绍了 VOC 对植物诱导抗性和耐受性的影响,其中报道了乙酰丁酮、二甲基二硫、3-戊醇和 6-戊基-α-吡喃酮等化合物。此外,我们总结了知识,以指导未来的研究,提出微生物 VOC 作为农业和园艺领域的技术创新。