Cortes Pablo A, Bozinovic Francisco, Blier Pierre U
Escuela de Agronomía, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile; Departamento de Ecología, Center of Applied Ecology and Sustainability, Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 6513677, Chile.
Departamento de Ecología, Center of Applied Ecology and Sustainability, Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 6513677, Chile.
Comp Biochem Physiol A Mol Integr Physiol. 2018 Jul;221:7-14. doi: 10.1016/j.cbpa.2017.12.014. Epub 2018 Mar 15.
Mammalian torpor is a phenotype characterized by a controlled decline of metabolic rate, generally followed by a reduction in body temperature. During arousal from torpor, both metabolic rate and body temperature rapidly returns to resting levels. Metabolic rate reduction experienced by torpid animals is triggered by active suppression of mitochondrial respiration, which is rapidly reversed during rewarming process. In this study, we analyzed the changes in the maximal activity of key enzymes related to electron transport system (complexes I, III and IV) in six tissues of torpid, arousing and euthermic Chilean mouse-opossums (Thylamys elegans). We observed higher maximal activities of complexes I and IV during torpor in brain, heart and liver, the most metabolically active organs in mammals. On the contrary, higher enzymatic activities of complexes III were observed during torpor in kidneys and lungs. Moreover, skeletal muscle was the only tissue without significant differences among stages in all complexes evaluated, suggesting no modulation of oxidative capacities of electron transport system components in this thermogenic tissue. In overall, our data suggest that complexes I and IV activity plays a major role in initiation and maintenance of metabolic suppression during torpor in Chilean mouse-opossum, whereas improvement of oxidative capacities in complex III might be critical to sustain metabolic machinery in organs that remains metabolically active during torpor.
哺乳动物的蛰伏是一种以代谢率可控下降为特征的表型,通常伴随着体温降低。从蛰伏状态苏醒时,代谢率和体温都会迅速恢复到静息水平。蛰伏动物经历的代谢率降低是由线粒体呼吸的主动抑制引发的,而在复温过程中这种抑制会迅速逆转。在本研究中,我们分析了蛰伏、苏醒和正常体温的智利小鼠负鼠(Thylamys elegans)六个组织中与电子传递系统相关的关键酶(复合体I、III和IV)的最大活性变化。我们观察到,在蛰伏期间,大脑、心脏和肝脏(哺乳动物中代谢最活跃的器官)中的复合体I和IV的最大活性较高。相反,在蛰伏期间,肾脏和肺中的复合体III的酶活性较高。此外,骨骼肌是所有评估复合体在各阶段均无显著差异的唯一组织,这表明该产热组织中电子传递系统成分的氧化能力没有受到调节。总体而言,我们的数据表明,复合体I和IV的活性在智利小鼠负鼠蛰伏期间代谢抑制的启动和维持中起主要作用,而复合体III氧化能力的提高可能对维持蛰伏期间仍保持代谢活跃的器官中的代谢机制至关重要。