文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Experimental Nonalcoholic Steatohepatitis and Liver Fibrosis Are Ameliorated by Pharmacologic Activation of Nrf2 (NF-E2 p45-Related Factor 2).

作者信息

Sharma Ritu S, Harrison David J, Kisielewski Dorothy, Cassidy Diane M, McNeilly Alison D, Gallagher Jennifer R, Walsh Shaun V, Honda Tadashi, McCrimmon Rory J, Dinkova-Kostova Albena T, Ashford Michael L J, Dillon John F, Hayes John D

机构信息

Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom.

School of Medicine, University of St Andrews, St Andrews, Scotland, United Kingdom.

出版信息

Cell Mol Gastroenterol Hepatol. 2017 Dec 13;5(3):367-398. doi: 10.1016/j.jcmgh.2017.11.016. eCollection 2018 Mar.


DOI:10.1016/j.jcmgh.2017.11.016
PMID:29552625
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5852394/
Abstract

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is associated with oxidative stress. We surmised that pharmacologic activation of NF-E2 p45-related factor 2 (Nrf2) using the acetylenic tricyclic bis(cyano enone) TBE-31 would suppress NASH because Nrf2 is a transcriptional master regulator of intracellular redox homeostasis. METHODS: and C57BL/6 mice were fed a high-fat plus fructose (HFFr) or regular chow diet for 16 weeks or 30 weeks, and then treated for the final 6 weeks, while still being fed the same HFFr or regular chow diets, with either TBE-31 or dimethyl sulfoxide vehicle control. Measures of whole-body glucose homeostasis, histologic assessment of liver, and biochemical and molecular measurements of steatosis, endoplasmic reticulum (ER) stress, inflammation, apoptosis, fibrosis, and oxidative stress were performed in livers from these animals. RESULTS: TBE-31 treatment reversed insulin resistance in HFFr-fed wild-type mice, but not in HFFr-fed Nrf2-null mice. TBE-31 treatment of HFFr-fed wild-type mice substantially decreased liver steatosis and expression of lipid synthesis genes, while increasing hepatic expression of fatty acid oxidation and lipoprotein assembly genes. Also, TBE-31 treatment decreased ER stress, expression of inflammation genes, and markers of apoptosis, fibrosis, and oxidative stress in the livers of HFFr-fed wild-type mice. By comparison, TBE-31 did not decrease steatosis, ER stress, lipogenesis, inflammation, fibrosis, or oxidative stress in livers of HFFr-fed Nrf2-null mice. CONCLUSIONS: Pharmacologic activation of Nrf2 in mice that had already been rendered obese and insulin resistant reversed insulin resistance, suppressed hepatic steatosis, and mitigated against NASH and liver fibrosis, effects that we principally attribute to inhibition of ER, inflammatory, and oxidative stress.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/c145f078bf55/gr20a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/4d0f58c4eebb/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/86ec2bf98726/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/67c792a681fe/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/0d480ea10369/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/7c9e674f36e0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/93e9110cd75b/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/f57ab2535766/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/fb04c7d1e19c/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/1fdaeb8e9c7e/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/c36be8a0198f/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/d378a231b847/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/0eaa37596014/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/ec2c1931b07c/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/df85578e15dc/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/9a3e72866275/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/2d11645d6dfa/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/4a83ecad205b/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/bfa1b8552e47/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/b7c7697d5351/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/f60f57ba19a5/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/c145f078bf55/gr20a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/4d0f58c4eebb/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/86ec2bf98726/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/67c792a681fe/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/0d480ea10369/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/7c9e674f36e0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/93e9110cd75b/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/f57ab2535766/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/fb04c7d1e19c/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/1fdaeb8e9c7e/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/c36be8a0198f/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/d378a231b847/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/0eaa37596014/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/ec2c1931b07c/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/df85578e15dc/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/9a3e72866275/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/2d11645d6dfa/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/4a83ecad205b/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/bfa1b8552e47/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/b7c7697d5351/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/f60f57ba19a5/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/5852394/c145f078bf55/gr20a.jpg

相似文献

[1]
Experimental Nonalcoholic Steatohepatitis and Liver Fibrosis Are Ameliorated by Pharmacologic Activation of Nrf2 (NF-E2 p45-Related Factor 2).

Cell Mol Gastroenterol Hepatol. 2017-12-13

[2]
Methionine restriction prevents the progression of hepatic steatosis in leptin-deficient obese mice.

Metabolism. 2013-8-5

[3]
Monascin and ankaflavin act as natural AMPK activators with PPARα agonist activity to down-regulate nonalcoholic steatohepatitis in high-fat diet-fed C57BL/6 mice.

Food Chem Toxicol. 2013-11-22

[4]
TXNIP/VDUP1 attenuates steatohepatitis via autophagy and fatty acid oxidation.

Autophagy. 2021-9

[5]
The ménage à trois of autophagy, lipid droplets and liver disease.

Autophagy. 2022-1

[6]
Mechanism of the development of nonalcoholic steatohepatitis after pancreaticoduodenectomy.

BBA Clin. 2015-2-19

[7]
Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management.

Acta Pharm Sin B. 2021-9

[8]
Free radical biology for medicine: learning from nonalcoholic fatty liver disease.

Free Radic Biol Med. 2013-8-29

[9]
n-3 Polyunsaturated fatty acids for the management of alcoholic liver disease: A critical review.

Crit Rev Food Sci Nutr. 2018-12-22

[10]
Silibinin ameliorates hepatic lipid accumulation and oxidative stress in mice with non-alcoholic steatohepatitis by regulating CFLAR-JNK pathway.

Acta Pharm Sin B. 2019-7

引用本文的文献

[1]
Reactive Oxygen Species as Key Molecules in the Pathogenesis of Alcoholic Fatty Liver Disease and Nonalcoholic Fatty Liver Disease: Future Perspectives.

Curr Issues Mol Biol. 2025-6-17

[2]
Fucoxanthin Ameliorates Carbon Tetrachloride-Induced Liver Fibrosis in Mice via Nrf2/HO-1/GPX4-Mediated Ferroptosis Pathway.

Food Sci Nutr. 2025-7-10

[3]
A novel β-TrCP1/NRF2 interaction inhibitor for effective anti-inflammatory therapy.

J Biomed Sci. 2025-7-11

[4]
The Role of Nrf2 in the Regulation of Periodontitis, Peri-implantitis, Dentin Infection, and Apical Periodontitis.

Biol Proced Online. 2025-7-2

[5]
GSTM1 suppresses cardiac fibrosis post-myocardial infarction through inhibiting lipid peroxidation and ferroptosis.

Mil Med Res. 2025-5-31

[6]
-Methyladenosine modification of circDcbld2 in Kupffer cells promotes hepatic fibrosis targeting miR-144-3p/ axis.

Acta Pharm Sin B. 2025-1

[7]
Thirty years of NRF2: advances and therapeutic challenges.

Nat Rev Drug Discov. 2025-3-4

[8]
Nuclear factor erythroid 2-related factor 2 ameliorates disordered glucose and lipid metabolism in liver: Involvement of gasdermin D in regulating pyroptosis.

Clin Transl Med. 2025-3

[9]
Protective role of sulforaphane in lipid metabolism-related diseases.

Mol Biol Rep. 2025-2-17

[10]
Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases.

Redox Biol. 2025-2

本文引用的文献

[1]
Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes.

Sci Transl Med. 2017-6-14

[2]
Lipid droplets and liver disease: from basic biology to clinical implications.

Nat Rev Gastroenterol Hepatol. 2017-6

[3]
Mitochondrial Adaptation in Nonalcoholic Fatty Liver Disease: Novel Mechanisms and Treatment Strategies.

Trends Endocrinol Metab. 2016-12-13

[4]
Alkylating Agent-Induced NRF2 Blocks Endoplasmic Reticulum Stress-Mediated Apoptosis via Control of Glutathione Pools and Protein Thiol Homeostasis.

Mol Cancer Ther. 2016-12

[5]
Ezetimibe, an NPC1L1 inhibitor, is a potent Nrf2 activator that protects mice from diet-induced nonalcoholic steatohepatitis.

Free Radic Biol Med. 2016-10

[6]
The Sweet Path to Metabolic Demise: Fructose and Lipid Synthesis.

Trends Endocrinol Metab. 2016-10

[7]
Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription.

Nat Commun. 2016-5-23

[8]
A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat diet.

Sci Rep. 2016-4-14

[9]
Keap1/Nrf2 pathway activation leads to a repressed hepatic gluconeogenic and lipogenic program in mice on a high-fat diet.

Arch Biochem Biophys. 2016-2-1

[10]
Hepatocyte-specific Keap1 deletion reduces liver steatosis but not inflammation during non-alcoholic steatohepatitis development.

Free Radic Biol Med. 2016-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索