通过 n 型、p 型和等电子掺杂对氮化碳单层的能带工程化用于光催化应用。
Band Engineering of Carbon Nitride Monolayers by N-Type, P-Type, and Isoelectronic Doping for Photocatalytic Applications.
机构信息
Department of Materials Science and Engineering , University of Toronto , 184 College Street, Suite 140 , Toronto ON M5S 3E4 , Canada.
Centre for Sustainable Chemical Technologies and Department of Chemistry , University of Bath , Bath BA2 7AY , United Kingdom.
出版信息
ACS Appl Mater Interfaces. 2018 Apr 4;10(13):11143-11151. doi: 10.1021/acsami.8b01729. Epub 2018 Mar 21.
Since hydrogen fuel involves the highest energy density among all fuels, production of this gas through the solar water splitting approach has been suggested as a green remedy for greenhouse environmental issues due to extensive consumption of fossil fuels. Low-dimensional materials possessing a large surface-to-volume ratio can be a promising candidate to be used for the photocatalytic approach. Here, we used extensive first-principles calculations to investigate the application of newly fabricated members of two-dimensional carbon nitrides including tg-CN, hg-CN, CN, and CN for water splitting. Band engineering via N-type, P-type, and isoelectronic doping agents such as B, N, P, Si, and Ge was demonstrated for tuning the electronic structure, optimizing solar absorption and band alignment for photocatalysis. Pristine tg-CN, hg-CN, and CN crystals involve bandgaps of 3.190, 2.772, and 2.465 eV, respectively, which are not proper for water splitting. Among the dopants, Si and Ge dopants can narrow the band gap of carbon nitrides about 0.5-1.0 eV and also increase their optical absorption in the visible spectrum. This study presents the potential for doping with isoelectronic elements to greatly improve the photocatalytic characteristics of carbon nitride nanostructures.
由于氢气燃料在所有燃料中具有最高的能量密度,因此通过太阳能水分解方法生产这种气体已被提议作为解决因大量消耗化石燃料而导致的温室环境问题的绿色方法。具有大表面积与体积比的低维材料可能是用于光催化方法的有前途的候选材料。在这里,我们使用广泛的第一性原理计算来研究二维碳氮化物的新成员 tg-CN、hg-CN、CN 和 CN 在水分解中的应用。通过 N 型、P 型和等电子掺杂剂(如 B、N、P、Si 和 Ge)进行能带工程,以调整电子结构,优化太阳能吸收和光催化能带排列。原始的 tg-CN、hg-CN 和 CN 晶体的带隙分别为 3.190、2.772 和 2.465 eV,不适合用于水分解。在掺杂剂中,Si 和 Ge 掺杂剂可以将碳氮化物的能带隙缩小约 0.5-1.0 eV,并增加它们在可见光光谱中的光吸收。这项研究表明,用等电子元素掺杂可以大大提高碳氮化物纳米结构的光催化特性。