Rahimi Kourosh, Moshfegh Alireza Z
Department of Physics, Sharif University of Technology, Tehran, 11155-9161, Iran.
Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran.
Phys Chem Chem Phys. 2021 Sep 22;23(36):20675-20685. doi: 10.1039/d1cp02911h.
Van der Waals (vdW) heterostructures of two-dimensional monolayers are a relatively new class of materials with highly tunable band alignment, bandgap energy, and bandgap transition type. In this study, we performed density functional theory calculations to investigate how a vdW heterostructure of heptazine-based graphitic carbon nitride (hg-CN) and graphitic zinc oxide (g-ZnO) monolayers is formed (hg-CN/g-ZnO). This heterostructure is a potential solar-driven photocatalyst for the water-splitting reaction. Upon the formation of the heterostructure, a type-I indirect bandgap ( = 2.08 eV) is created with appropriate conduction band minimum and valence band maximum levels relative to the oxidation/reduction potentials for the water-splitting reaction. In addition, a very large electrostatic potential difference of 11.18 eV is generated across the heterostructure, leading to a large, naturally-formed, built-in electric field directing from hg-CN to g-ZnO. The produced electric field forces photogenerated electrons in g-ZnO to transfer toward hg-CN, leading to a decrease in the electron-hole recombination rate. We also found that both g-ZnO and hg-CN synergistically lead to higher light absorption of the heterostructure ( = 387 nm). Furthermore, band alignment, bandgap energy, and transition type of the heterostructure can be tuned by applying external perpendicular electric fields and biaxial strains. It was found that a strain of +2% leads to a Z-scheme band alignment ( = 2.34 eV, direct) and an electric field of 1 V Å leads to a type-II heterostructure ( = 2.29 eV, indirect), which are both beneficial for efficient water-splitting photocatalysis.
二维单层范德华(vdW)异质结构是一类相对较新的材料,具有高度可调的能带排列、带隙能量和带隙跃迁类型。在本研究中,我们进行了密度泛函理论计算,以研究基于七嗪的石墨相氮化碳(hg-CN)和石墨相氧化锌(g-ZnO)单层的vdW异质结构是如何形成的(hg-CN/g-ZnO)。这种异质结构是一种潜在的用于水分解反应的太阳能驱动光催化剂。在异质结构形成后,产生了I型间接带隙( = 2.08 eV),相对于水分解反应的氧化/还原电位,具有合适的导带最小值和价带最大值水平。此外,在整个异质结构上产生了11.18 eV的非常大的静电势差,导致形成一个从hg-CN指向g-ZnO的大的、自然形成的内建电场。产生的电场迫使g-ZnO中的光生电子向hg-CN转移,导致电子-空穴复合率降低。我们还发现,g-ZnO和hg-CN协同作用导致异质结构具有更高的光吸收( = 387 nm)。此外,通过施加外部垂直电场和双轴应变,可以调节异质结构的能带排列、带隙能量和跃迁类型。研究发现,+2%的应变会导致Z型能带排列( = 2.34 eV,直接),而1 V Å的电场会导致II型异质结构( = 2.29 eV,间接),这两者都有利于高效的水分解光催化。