Golse François
CMLS, Ecole polytechnique and CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France
Philos Trans A Math Phys Eng Sci. 2018 Apr 28;376(2118). doi: 10.1098/rsta.2017.0229.
The present work discusses the mean-field limit for the quantum -body problem in the semiclassical regime. More precisely, we establish a convergence rate for the mean-field limit which is uniform as the ratio of Planck constant to the action of the typical single particle tends to zero. This convergence rate is formulated in terms of a quantum analogue of the quadratic Monge-Kantorovich or Wasserstein distance. This paper is an account of some recent collaboration with C. Mouhot, T. Paul and M. Pulvirenti.This article is part of the themed issue 'Hilbert's sixth problem'.
本文讨论了半经典区域中量子多体问题的平均场极限。更确切地说,我们建立了平均场极限的收敛速度,当普朗克常数与典型单粒子作用量的比值趋于零时,该收敛速度是一致的。这个收敛速度是根据二次蒙日 - 康托罗维奇或瓦瑟斯坦距离的量子类似物来表述的。本文是与C. 穆奥、T. 保罗和M. 普尔维伦蒂近期合作的成果汇报。本文是主题为“希尔伯特第六问题”特刊的一部分。