Park Soojin, Megjhani Murad, Frey Hans-Peter, Grave Edouard, Wiggins Chris, Terilli Kalijah L, Roh David J, Velazquez Angela, Agarwal Sachin, Connolly E Sander, Schmidt J Michael, Claassen Jan, Elhadad Noemie
Department of Neurology, Columbia University, 177 Fort Washington Ave, 8 Milstein - 300 Center, New York, NY, USA.
Department of Biomedical Informatics, Columbia University, New York, NY, USA.
J Clin Monit Comput. 2019 Feb;33(1):95-105. doi: 10.1007/s10877-018-0132-5. Epub 2018 Mar 20.
To develop and validate a prediction model for delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH) using a temporal unsupervised feature engineering approach, demonstrating improved precision over standard features. 488 consecutive SAH admissions from 2006 to 2014 to a tertiary care hospital were included. Models were trained on 80%, while 20% were set aside for validation testing. Baseline information and standard grading scales were evaluated: age, sex, Hunt Hess grade, modified Fisher Scale (mFS), and Glasgow Coma Scale (GCS). An unsupervised approach applying random kernels was used to extract features from physiological time series (systolic and diastolic blood pressure, heart rate, respiratory rate, and oxygen saturation). Classifiers (Partial Least Squares, linear and kernel Support Vector Machines) were trained on feature subsets of the derivation dataset. Models were applied to the validation dataset. The performances of the best classifiers on the validation dataset are reported by feature subset. Standard grading scale (mFS): AUC 0.58. Combined demographics and grading scales: AUC 0.60. Random kernel derived physiologic features: AUC 0.74. Combined baseline and physiologic features with redundant feature reduction: AUC 0.77. Current DCI prediction tools rely on admission imaging and are advantageously simple to employ. However, using an agnostic and computationally inexpensive learning approach for high-frequency physiologic time series data, we demonstrated that our models achieve higher classification accuracy.
采用时间无监督特征工程方法开发并验证蛛网膜下腔出血(SAH)后迟发性脑缺血(DCI)的预测模型,证明其精度优于标准特征。纳入了2006年至2014年一家三级护理医院连续收治的488例SAH患者。模型在80%的数据上进行训练,同时留出20%用于验证测试。评估基线信息和标准分级量表:年龄、性别、Hunt Hess分级、改良Fisher量表(mFS)和格拉斯哥昏迷量表(GCS)。采用应用随机核的无监督方法从生理时间序列(收缩压和舒张压、心率、呼吸频率和血氧饱和度)中提取特征。在推导数据集的特征子集上训练分类器(偏最小二乘法、线性和核支持向量机)。将模型应用于验证数据集。按特征子集报告验证数据集上最佳分类器的性能。标准分级量表(mFS):AUC为0.58。人口统计学和分级量表组合:AUC为0.60。随机核衍生的生理特征:AUC为0.74。结合基线和生理特征并进行冗余特征约简:AUC为0.77。目前的DCI预测工具依赖入院时的影像学检查,使用起来简单方便。然而,通过对高频生理时间序列数据采用一种不可知且计算成本低的学习方法,我们证明我们的模型具有更高的分类准确率。