Suppr超能文献

利用生理时间序列数据预测蛛网膜下腔出血后的迟发性脑缺血

Predicting delayed cerebral ischemia after subarachnoid hemorrhage using physiological time series data.

作者信息

Park Soojin, Megjhani Murad, Frey Hans-Peter, Grave Edouard, Wiggins Chris, Terilli Kalijah L, Roh David J, Velazquez Angela, Agarwal Sachin, Connolly E Sander, Schmidt J Michael, Claassen Jan, Elhadad Noemie

机构信息

Department of Neurology, Columbia University, 177 Fort Washington Ave, 8 Milstein - 300 Center, New York, NY, USA.

Department of Biomedical Informatics, Columbia University, New York, NY, USA.

出版信息

J Clin Monit Comput. 2019 Feb;33(1):95-105. doi: 10.1007/s10877-018-0132-5. Epub 2018 Mar 20.

Abstract

To develop and validate a prediction model for delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH) using a temporal unsupervised feature engineering approach, demonstrating improved precision over standard features. 488 consecutive SAH admissions from 2006 to 2014 to a tertiary care hospital were included. Models were trained on 80%, while 20% were set aside for validation testing. Baseline information and standard grading scales were evaluated: age, sex, Hunt Hess grade, modified Fisher Scale (mFS), and Glasgow Coma Scale (GCS). An unsupervised approach applying random kernels was used to extract features from physiological time series (systolic and diastolic blood pressure, heart rate, respiratory rate, and oxygen saturation). Classifiers (Partial Least Squares, linear and kernel Support Vector Machines) were trained on feature subsets of the derivation dataset. Models were applied to the validation dataset. The performances of the best classifiers on the validation dataset are reported by feature subset. Standard grading scale (mFS): AUC 0.58. Combined demographics and grading scales: AUC 0.60. Random kernel derived physiologic features: AUC 0.74. Combined baseline and physiologic features with redundant feature reduction: AUC 0.77. Current DCI prediction tools rely on admission imaging and are advantageously simple to employ. However, using an agnostic and computationally inexpensive learning approach for high-frequency physiologic time series data, we demonstrated that our models achieve higher classification accuracy.

摘要

采用时间无监督特征工程方法开发并验证蛛网膜下腔出血(SAH)后迟发性脑缺血(DCI)的预测模型,证明其精度优于标准特征。纳入了2006年至2014年一家三级护理医院连续收治的488例SAH患者。模型在80%的数据上进行训练,同时留出20%用于验证测试。评估基线信息和标准分级量表:年龄、性别、Hunt Hess分级、改良Fisher量表(mFS)和格拉斯哥昏迷量表(GCS)。采用应用随机核的无监督方法从生理时间序列(收缩压和舒张压、心率、呼吸频率和血氧饱和度)中提取特征。在推导数据集的特征子集上训练分类器(偏最小二乘法、线性和核支持向量机)。将模型应用于验证数据集。按特征子集报告验证数据集上最佳分类器的性能。标准分级量表(mFS):AUC为0.58。人口统计学和分级量表组合:AUC为0.60。随机核衍生的生理特征:AUC为0.74。结合基线和生理特征并进行冗余特征约简:AUC为0.77。目前的DCI预测工具依赖入院时的影像学检查,使用起来简单方便。然而,通过对高频生理时间序列数据采用一种不可知且计算成本低的学习方法,我们证明我们的模型具有更高的分类准确率。

相似文献

1
Predicting delayed cerebral ischemia after subarachnoid hemorrhage using physiological time series data.
J Clin Monit Comput. 2019 Feb;33(1):95-105. doi: 10.1007/s10877-018-0132-5. Epub 2018 Mar 20.
5
Increased risk of delayed cerebral ischemia in subarachnoid hemorrhage patients with additional intracerebral hematoma.
J Neurosurg. 2017 Feb;126(2):504-510. doi: 10.3171/2015.12.JNS151563. Epub 2016 Mar 11.
8
Radiological scales predicting delayed cerebral ischemia in subarachnoid hemorrhage: systematic review and meta-analysis.
Neuroradiology. 2019 Mar;61(3):247-256. doi: 10.1007/s00234-019-02161-9. Epub 2019 Jan 28.
10
Predicting Delayed Cerebral Ischemia with Quantified Aneurysmal Subarachnoid Blood Volume.
World Neurosurg. 2019 Oct;130:e613-e619. doi: 10.1016/j.wneu.2019.06.170. Epub 2019 Jun 28.

引用本文的文献

5
6
Precision Medicine in Neurocritical Care for Cerebrovascular Disease Cases.
Stroke. 2023 May;54(5):1392-1402. doi: 10.1161/STROKEAHA.122.036402. Epub 2023 Feb 15.
7
Vector Angle Analysis of Multimodal Neuromonitoring Data for Continuous Prediction of Delayed Cerebral Ischemia.
Neurocrit Care. 2022 Aug;37(Suppl 2):230-236. doi: 10.1007/s12028-022-01481-8. Epub 2022 Mar 30.
8
Prediction and Risk Assessment Models for Subarachnoid Hemorrhage: A Systematic Review on Case Studies.
Biomed Res Int. 2022 Jan 27;2022:5416726. doi: 10.1155/2022/5416726. eCollection 2022.
9
Artificial Intelligence: A Shifting Paradigm in Cardio-Cerebrovascular Medicine.
J Clin Med. 2021 Dec 6;10(23):5710. doi: 10.3390/jcm10235710.

本文引用的文献

1
Machine Learning and Decision Support in Critical Care.
Proc IEEE Inst Electr Electron Eng. 2016 Feb;104(2):444-466. doi: 10.1109/JPROC.2015.2501978. Epub 2016 Jan 25.
4
Analyzing complex patients' temporal histories: new frontiers in temporal data mining.
Methods Mol Biol. 2015;1246:89-105. doi: 10.1007/978-1-4939-1985-7_6.
5
Selection of entropy-measure parameters for knowledge discovery in heart rate variability data.
BMC Bioinformatics. 2014;15 Suppl 6(Suppl 6):S2. doi: 10.1186/1471-2105-15-S6-S2. Epub 2014 May 16.
6
A physiological time series dynamics-based approach to patient monitoring and outcome prediction.
IEEE J Biomed Health Inform. 2015 May;19(3):1068-76. doi: 10.1109/JBHI.2014.2330827. Epub 2014 Jun 30.
7
Prediction of significant vasospasm in aneurysmal subarachnoid hemorrhage using automated data.
Neurocrit Care. 2014 Dec;21(3):444-50. doi: 10.1007/s12028-014-9976-9.
9
Predicting the lack of development of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage.
Stroke. 2012 Mar;43(3):697-701. doi: 10.1161/STROKEAHA.111.638403. Epub 2011 Dec 22.
10
Assessing the incremental value of diagnostic and prognostic markers: a review and illustration.
Eur J Clin Invest. 2012 Feb;42(2):216-28. doi: 10.1111/j.1365-2362.2011.02562.x. Epub 2011 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验