Suppr超能文献

纳米芯片诱导的上皮-间充质转化:物理微环境对癌症转移的影响。

Nanochip-Induced Epithelial-to-Mesenchymal Transition: Impact of Physical Microenvironment on Cancer Metastasis.

机构信息

Department of Materials and Mineral Resources Engineering , National Taipei University of Technology , 1, Section 3, Zhongxiao E. Rd , Taipei , Taiwan 10608 , ROC.

出版信息

ACS Appl Mater Interfaces. 2018 Apr 11;10(14):11474-11485. doi: 10.1021/acsami.7b19467. Epub 2018 Mar 28.

Abstract

Epithelial-to-mesenchymal transition (EMT) is a highly orchestrated process motivated by the nature of physical and chemical compositions of the tumor microenvironment (TME). The role of the physical framework of the TME in guiding cells toward EMT is poorly understood. To investigate this, breast cancer MDA-MB-231 and MCF-7 cells were cultured on nanochips comprising tantalum oxide nanodots ranging in diameter from 10 to 200 nm, fabricated through electrochemical approach and collectively referred to as artificial microenvironments. The 100 and 200 nm nanochips induced the cells to adopt an elongated or spindle-shaped morphology. The key EMT genes, E-cadherin, N-cadherin, and vimentin, displayed the spatial control exhibited by the artificial microenvironments. The E-cadherin gene expression was attenuated, whereas those of N-cadherin and vimentin were amplified by 100 and 200 nm nanochips, indicating the induction of EMT. Transcription factors, snail and twist, were identified for modulating the EMT genes in the cells on these artificial microenvironments. Localization of EMT proteins observed through immunostaining indicated the loss of cell-cell junctions on 100 and 200 nm nanochips, confirming the EMT induction. Thus, by utilizing an in vitro approach, we demonstrate how the physical framework of the TME may possibly trigger or assist in inducing EMT in vivo. Applications in the fields of drug discovery, biomedical engineering, and cancer research are expected.

摘要

上皮间质转化 (EMT) 是一个高度协调的过程,由肿瘤微环境 (TME) 的物理和化学组成性质所驱动。TME 的物理框架在指导细胞向 EMT 转化方面的作用还知之甚少。为了研究这一点,乳腺癌 MDA-MB-231 和 MCF-7 细胞在纳米芯片上培养,纳米芯片由通过电化学方法制备的直径为 10 至 200nm 的氧化钽纳米点组成,统称为人工微环境。100nm 和 200nm 纳米芯片诱导细胞采用细长或纺锤形形态。关键的 EMT 基因,E-钙粘蛋白、N-钙粘蛋白和波形蛋白,显示出人工微环境所展示的空间控制。E-钙粘蛋白基因的表达被减弱,而 N-钙粘蛋白和波形蛋白的表达则被 100nm 和 200nm 纳米芯片增强,表明 EMT 的诱导。转录因子 snail 和 twist 被鉴定为调节这些人工微环境中细胞的 EMT 基因。通过免疫染色观察到的 EMT 蛋白的定位表明在 100nm 和 200nm 纳米芯片上失去了细胞-细胞连接,证实了 EMT 的诱导。因此,通过利用体外方法,我们展示了 TME 的物理框架如何可能触发或协助体内 EMT 的诱导。预计在药物发现、生物医学工程和癌症研究等领域有应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验