State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200433 , China.
Sustainable Energy Technologies Center, College of Engineering , King Saud University , Riyadh 11421 , Kingdom of Saudi Arabia.
ACS Nano. 2018 Apr 24;12(4):3947-3953. doi: 10.1021/acsnano.8b01488. Epub 2018 Mar 22.
Synthesis of ultrasmall metal-organic framework (MOF) nanoparticles has been widely recognized as a promising route to greatly enhance their properties but remains a considerable challenge. Herein, we report one facile and effective spatially confined thermal pulverization strategy to successfully transform bulk Co-MOF particles into sub-5 nm nanocrystals encapsulated within N-doped carbon/graphene (NC/G) by using conducting polymer coated Co-MOFs/graphene oxide as precursors. This strategy involves a feasible mechanism: calcination of Co-MOFs at proper temperature in air induces the partial thermal collapse/distortion of the framework, while the uniform coating of a conducting polymer can significantly improve the decomposition temperature and maintain the component stability of Co-MOFs, thus leading to the pulverization of bulk Co-MOF particles into ultrasmall nanocrystals without oxidation. The pulverization of Co-MOFs significantly increases the contact area between Co-MOFs with electrolyte and shortens the electron and ion transport pathway. Therefore, the sub-5 nm ultrasmall MOF nanocrystals-based composites deliver an ultrahigh reversible capacity (1301 mAh g at 0.1 A g), extraordinary rate performance (494 mAh g at 40 A g), and outstanding cycling stability (98.6% capacity retention at 10 A g after 2000 cycles), which is the best performance achieved in all reported MOF-based anodes for lithium-ion batteries.
超小金属-有机骨架(MOF)纳米粒子的合成被广泛认为是一种很有前途的方法,可以大大提高它们的性能,但仍然是一个相当大的挑战。在此,我们报告了一种简便有效的空间限制热粉碎策略,该策略使用导电聚合物包覆的 Co-MOFs/氧化石墨烯作为前体制备氮掺杂碳/石墨烯(NC/G)内包裹的亚 5nm 纳米晶,成功地将块状 Co-MOF 颗粒转化为亚 5nm 纳米晶。该策略涉及一种可行的机制:在空气中将 Co-MOFs 加热到适当的温度会导致框架的部分热崩溃/变形,而导电聚合物的均匀包覆可以显著提高分解温度并保持 Co-MOFs 的组分稳定性,从而导致块状 Co-MOF 颗粒粉碎成亚 5nm 的纳米晶而不被氧化。Co-MOFs 的粉碎显著增加了 Co-MOFs 与电解质的接触面积,并缩短了电子和离子的传输路径。因此,基于亚 5nm 超小 MOF 纳米晶的复合材料具有超高的可逆容量(在 0.1A g 时为 1301mAh g)、非凡的倍率性能(在 40A g 时为 494mAh g)和出色的循环稳定性(在 10A g 下 2000 次循环后容量保持率为 98.6%),这是所有报道的基于 MOF 的锂离子电池负极中最好的性能。