Center of Nanomaterials for Renewable Energy (CNRE), State Key Lab of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Nanoscale. 2018 Mar 29;10(13):6159-6167. doi: 10.1039/C8NR00405F.
To address the volume change-induced pulverization problem of tin-based anodes, a concept using hollow carbon nanoballs (HCNBs) as buffering supports is herein proposed. HCNBs with hollow interior, flexibility and graphitic crystallization are first prepared by a combined method of chemical vapor deposition (CVD) and template-synthesis using CH4 as the carbon source and CaCO3 as the conformal template. The ultrafine SnO2 nanoparticles are loaded onto the HCNBs (denoted as SnO2@HCNBs) via pyrolysis of tin(ii) 2-ethylhexanoate at 300 °C in air. On further annealing SnO2@HCNBs in Ar, SnO2 is partially reduced to SnOx by consuming a part of carbon of HCNBs as the reducing agent, and thus SnOx@HCNBs are obtained (note that SnOx represents a composite consisting of SnO2, SnO and Sn phases). When applied as anode materials for lithium ion batteries (LIBs), HCNBs deliver high reversible capacities of 841 mA h g-1 after 125 cycles at 200 mA g-1, and 726 mA h g-1 after 400 cycles even at 1000 mA g-1, while SnO2@HCNBs and SnOx@HCNBs exhibit discharge capacities of 1042 and 1299 mA h g-1 after 400 cycles at 200 mA g-1, respectively. Notably, all of them display gradually increased capacity with retention over 100% even after long-term cycling, which is attributed to the novel robust characteristic of the HCNBs as revealed by the ex situ TEM analysis. The flexible hollow HCNBs with high graphitic crystallization not only efficiently tolerate the volume changes of the Li-Sn alloying-dealloying but also facilitate the electrolyte/charge transfer owing to the hollow structure and high conductivity of the HCNBs.
为了解决锡基阳极因体积变化而粉碎的问题,提出了一种利用中空碳纳米球(HCNB)作为缓冲支撑的概念。首先通过化学气相沉积(CVD)和模板合成的组合方法,以 CH4 为碳源,CaCO3 为模板,制备具有中空内部、柔韧性和石墨结晶的 HCNB。通过在空气中 300°C 下热解二乙基己酸锡,将超细微 SnO2 纳米颗粒负载到 HCNB 上(表示为 SnO2@HCNB)。进一步在 Ar 中退火 SnO2@HCNB,SnO2 通过消耗 HCNB 的一部分碳作为还原剂部分还原为 SnOx,从而得到 SnOx@HCNB(注意 SnOx 表示由 SnO2、SnO 和 Sn 相组成的复合材料)。当用作锂离子电池(LIB)的阳极材料时,HCNB 在 200 mA g-1 下循环 125 次后具有 841 mA h g-1 的高可逆容量,在 1000 mA g-1 下循环 400 次后仍具有 726 mA h g-1 的容量,而 SnO2@HCNB 和 SnOx@HCNB 在 200 mA g-1 下循环 400 次后分别具有 1042 和 1299 mA h g-1 的放电容量。值得注意的是,即使经过长期循环,它们的容量也都以超过 100%的比例逐渐增加,这归因于通过原位 TEM 分析揭示的 HCNB 的新型稳健特性。具有高石墨结晶的柔性中空 HCNB 不仅能有效地承受 Li-Sn 合金化-脱合金化的体积变化,而且由于 HCNB 的中空结构和高导电性,还能促进电解质/电荷转移。