Suppr超能文献

核桃核状中空碳微/纳米球负载 SnO@C 复合材料作为高性能锂离子电池负极。

Walnut core-like hollow carbon micro/nanospheres supported SnO@C composite for high performance lithium-ion battery anode.

机构信息

Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.

Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.

出版信息

J Colloid Interface Sci. 2019 Oct 15;554:424-432. doi: 10.1016/j.jcis.2019.07.026. Epub 2019 Jul 12.

Abstract

Herein, to cope with the volume variation problem of SnO anodes for lithium-ion batteries, individual walnut core-like hollow carbon micro/nanospheres (WCSs) have been prepared to be used as a supporting skeleton to form WCSs@SnO@C composite. In WCSs@SnO@C the SnO (SnO with relatively small amounts of SnO) nanoparticles are well sandwiched between inner WCSs supporting skeleton and outmost glucose derived carbon anchoring coating. It is suggested that the characteristic composite construction has three key contributions to the electrochemical performance of WCSs@SnO@C composite: firstly, with structural characteristics such as network filled cavities and porous shells, the WCSs has stronger stress tolerance, and therefore can be better able to withstand structural deformation of SnO nanoparticles; secondly, the outmost glucose derived carbon, as an anchoring coating, can not only prevent SnO nanoparticles from aggregating but also pulverization; finally, the ultrafine SnO nanoparticles have low absolute volume change and shortened ions and electrons transfer distances, and therefore possess improved electrochemical performance. As a result, with the combined effect of WCSs, ultrafine SnO nanoparticles and outmost carbon coating, the as-constructed WCSs@SnO@C exhibits outstanding electrochemical performances such as high capacity (853 mAh g at 200 mA g after 400 cycles) and ultra-long lifespan (417 mAh g at 1000 mA g after even 1000 cycles).

摘要

在此,为了解决锂离子电池 SnO 负极的体积变化问题,我们制备了个体胡桃核状的中空碳微/纳米球(WCSs)作为支撑骨架,形成 WCSs@SnO@C 复合材料。在 WCSs@SnO@C 中,SnO(SnO 含量相对较少)纳米颗粒很好地夹在内部 WCSs 支撑骨架和最外层葡萄糖衍生碳锚定涂层之间。有人认为,这种特征复合材料结构对 WCSs@SnO@C 复合材料的电化学性能有三个关键贡献:首先,具有网络填充腔和多孔壳等结构特征,WCSs 具有更强的抗应力能力,因此能够更好地承受 SnO 纳米颗粒的结构变形;其次,最外层的葡萄糖衍生碳作为锚定涂层,不仅可以防止 SnO 纳米颗粒聚集,还可以防止其粉碎;最后,超细 SnO 纳米颗粒的绝对体积变化较小,离子和电子的转移距离较短,因此具有改进的电化学性能。结果,由于 WCSs、超细 SnO 纳米颗粒和最外层碳涂层的共同作用,所构建的 WCSs@SnO@C 表现出出色的电化学性能,如高容量(400 次循环后 200 mA g 时为 853 mAh g)和超长寿命(1000 次循环后 1000 mA g 时为 417 mAh g)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验