Hwang Sang-Yeon, Kim Jaewook, Kim Woo Youn
Department of Chemistry, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
Phys Chem Chem Phys. 2018 Apr 4;20(14):9146-9156. doi: 10.1039/C8CP00266E.
In theoretical charge-transfer research, calculation of the electronic coupling element is crucial for examining the degree of the electronic donor-acceptor interaction. The tunneling current (TC), representing the magnitudes and directions of electron flow, provides a way of evaluating electronic couplings, along with the ability of visualizing how electrons flow in systems. Here, we applied the TC theory to π-conjugated organic dimer systems, in the form of our fragment-orbital tunneling current (FOTC) method, which uses the frontier molecular-orbitals of system fragments as diabatic states. For a comprehensive test of FOTC, we assessed how reasonable the computed electronic couplings and the corresponding TC densities are for the hole- and electron-transfer databases HAB11 and HAB7. FOTC gave 12.5% mean relative unsigned error with regard to the high-level ab initio reference. The shown performance is comparable with that of fragment-orbital density functional theory, which gave the same error by 20.6% or 13.9% depending on the formulation. In the test of a set of nucleobase π stacks, we showed that the original TC expression is also applicable to nondegenerate cases under the condition that the overlap between the charge distributions of diabatic states is small enough to offset the energy difference. Lastly, we carried out visual analysis on the FOTC densities of thiophene dimers with different intermolecular alignments. The result depicts an intimate topological connection between the system geometry and electron flow. Our work provides quantitative and qualitative grounds for FOTC, showing it to be a versatile tool in characterization of molecular charge-transfer systems.
在理论电荷转移研究中,电子耦合元件的计算对于检验电子供体 - 受体相互作用的程度至关重要。隧穿电流(TC)代表电子流动的大小和方向,它提供了一种评估电子耦合的方法,同时还具备可视化电子在系统中流动方式的能力。在此,我们将TC理论应用于π共轭有机二聚体系统,采用我们的片段轨道隧穿电流(FOTC)方法,该方法将系统片段的前沿分子轨道用作非绝热态。为了对FOTC进行全面测试,我们评估了针对空穴转移和电子转移数据库HAB11和HAB7计算得到的电子耦合以及相应的TC密度的合理性。FOTC相对于高水平的从头算参考给出了12.5%的平均相对无符号误差。所展示的性能与片段轨道密度泛函理论相当,后者根据公式给出的误差为20.6%或13.9%。在一组核碱基π堆积的测试中,我们表明,在非绝热态电荷分布之间的重叠足够小以抵消能量差的条件下,原始的TC表达式也适用于非简并情况。最后,我们对具有不同分子间排列的噻吩二聚体的FOTC密度进行了可视化分析。结果描绘了系统几何结构与电子流动之间紧密的拓扑联系。我们的工作为FOTC提供了定量和定性依据,表明它是表征分子电荷转移系统的一种通用工具。