Suppr超能文献

利用全细胞生物催化从内消旋-2,3-丁二醇高效生产(3S)-乙酰基-3-羟基丁酮和(2S,3S)-2,3-丁二醇。

Efficient (3S)-Acetoin and (2S,3S)-2,3-Butanediol Production from meso-2,3-Butanediol Using Whole-Cell Biocatalysis.

机构信息

Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

出版信息

Molecules. 2018 Mar 19;23(3):691. doi: 10.3390/molecules23030691.

Abstract

(3)-Acetoin and (2,3)-2,3-butanediol are important platform chemicals widely applied in the asymmetric synthesis of valuable chiral chemicals. However, their production by fermentative methods is difficult to perform. This study aimed to develop a whole-cell biocatalysis strategy for the production of (3)-acetoin and (2,3)-2,3-butanediol from -2,3-butanediol. First, co-expressing (2,3)-2,3-butanediol dehydrogenase, NADH oxidase and hemoglobin was developed for (3)-acetoin production from -2,3-butanediol. Maximum (3)-acetoin concentration of 72.38 g/L with the stereoisomeric purity of 94.65% was achieved at 24 h under optimal conditions. Subsequently, we developed another biocatalyst co-expressing (2,3)-2,3-butanediol dehydrogenase and formate dehydrogenase for (2,3)-2,3-butanediol production from (3)-acetoin. Synchronous catalysis together with two biocatalysts afforded 38.41 g/L of (2,3)-butanediol with stereoisomeric purity of 98.03% from 40 g/L -2,3-butanediol. These results exhibited the potential for (3)-acetoin and (2,3)-butanediol production from -2,3-butanediol as a substrate via whole-cell biocatalysis.

摘要

(3)-乙酰基 -2,3-丁二醇和(2,3)-2,3-丁二醇是重要的平台化学品,广泛应用于有价值的手性化学品的不对称合成中。然而,它们通过发酵方法生产是困难的。本研究旨在开发一种全细胞生物催化策略,从 -2,3-丁二醇生产(3)-乙酰基 -2,3-丁二醇和(2,3)-2,3-丁二醇。首先,共表达(2,3)-2,3-丁二醇脱氢酶、NADH 氧化酶和血红蛋白,用于从 -2,3-丁二醇生产(3)-乙酰基 -2,3-丁二醇。在最佳条件下,24 小时内可获得 72.38 g/L 的(3)-乙酰基 -2,3-丁二醇,立体异构体纯度为 94.65%。随后,我们开发了另一种共表达(2,3)-2,3-丁二醇脱氢酶和甲酸脱氢酶的生物催化剂,用于从(3)-乙酰基 -2,3-丁二醇生产(2,3)-2,3-丁二醇。两种生物催化剂的同步催化作用,从 40 g/L -2,3-丁二醇中获得了 38.41 g/L 的(2,3)-丁二醇,立体异构体纯度为 98.03%。这些结果表明,通过全细胞生物催化,从 -2,3-丁二醇作为底物生产(3)-乙酰基 -2,3-丁二醇和(2,3)-2,3-丁二醇具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5089/6017632/3ee9984917b8/molecules-23-00691-g001.jpg

相似文献

2
A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30.
Appl Microbiol Biotechnol. 2014 Feb;98(3):1175-84. doi: 10.1007/s00253-013-4959-x. Epub 2013 May 12.
3
Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production.
J Ind Microbiol Biotechnol. 2015 May;42(5):779-86. doi: 10.1007/s10295-015-1598-5. Epub 2015 Feb 10.
5
Biocatalytic production of (2S,3S)-2,3-butanediol from diacetyl using whole cells of engineered Escherichia coli.
Bioresour Technol. 2012 Jul;115:111-6. doi: 10.1016/j.biortech.2011.08.097. Epub 2011 Aug 27.
6
Production of (2S,3S)-2,3-butanediol and (3S)-acetoin from glucose using resting cells of Klebsiella pneumonia and Bacillus subtilis.
Bioresour Technol. 2011 Nov;102(22):10741-4. doi: 10.1016/j.biortech.2011.08.110. Epub 2011 Sep 8.
7
Cloning, expression and characterization of glycerol dehydrogenase involved in 2,3-butanediol formation in Serratia marcescens H30.
J Ind Microbiol Biotechnol. 2014 Sep;41(9):1319-27. doi: 10.1007/s10295-014-1472-x. Epub 2014 Jul 1.
8
Stereospecificity of Corynebacterium glutamicum 2,3-butanediol dehydrogenase and implications for the stereochemical purity of bioproduced 2,3-butanediol.
Appl Microbiol Biotechnol. 2016 Dec;100(24):10573-10583. doi: 10.1007/s00253-016-7860-6. Epub 2016 Sep 29.

引用本文的文献

1
Efficient 2,3-Butanediol Production from Ethanol by a Modified Four-Enzyme Synthetic Biosystem.
Molecules. 2024 Aug 20;29(16):3934. doi: 10.3390/molecules29163934.
2
Shifting redox reaction equilibria on demand using an orthogonal redox cofactor.
Nat Chem Biol. 2024 Nov;20(11):1535-1546. doi: 10.1038/s41589-024-01702-5. Epub 2024 Aug 13.
3
Efficient production of acetoin from lactate by engineered Escherichia coli whole-cell biocatalyst.
Appl Microbiol Biotechnol. 2023 Jun;107(12):3911-3924. doi: 10.1007/s00253-023-12560-x. Epub 2023 May 13.
5
Enhanced production of optical ()-acetoin by a recombinant whole-cell biocatalyst with NADH regeneration.
RSC Adv. 2018 Aug 29;8(53):30512-30519. doi: 10.1039/c8ra06260a. eCollection 2018 Aug 24.
6
C4 Bacterial Volatiles Improve Plant Health.
Pathogens. 2021 May 31;10(6):682. doi: 10.3390/pathogens10060682.

本文引用的文献

2
Engineering Bacillus licheniformis for the production of meso-2,3-butanediol.
Biotechnol Biofuels. 2016 Jun 2;9:117. doi: 10.1186/s13068-016-0522-1. eCollection 2016.
3
Coupled reactions on bioparticles: Stereoselective reduction with cofactor regeneration on PhaC inclusion bodies.
Biotechnol J. 2016 Jul;11(7):890-8. doi: 10.1002/biot.201500495. Epub 2016 Mar 10.
5
Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose.
Biotechnol Biofuels. 2015 Sep 15;8:143. doi: 10.1186/s13068-015-0324-x. eCollection 2015.
6
Characterization of a (2R,3R)-2,3-Butanediol Dehydrogenase from Rhodococcus erythropolis WZ010.
Molecules. 2015 Apr 20;20(4):7156-73. doi: 10.3390/molecules20047156.
7
Production of diacetyl by metabolically engineered Enterobacter cloacae.
Sci Rep. 2015 Mar 12;5:9033. doi: 10.1038/srep09033.
10
Cloning, expression and characterization of glycerol dehydrogenase involved in 2,3-butanediol formation in Serratia marcescens H30.
J Ind Microbiol Biotechnol. 2014 Sep;41(9):1319-27. doi: 10.1007/s10295-014-1472-x. Epub 2014 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验