Distell, Stellenbosch, South Africa, Stellenbosch University, Stellenbosch, South Africa.
Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa.
Sci Rep. 2018 Mar 21;8(1):4987. doi: 10.1038/s41598-018-23347-w.
The increasingly large volumes of publicly available sensory descriptions of wine raises the question whether this source of data can be mined to extract meaningful domain-specific information about the sensory properties of wine. We introduce a novel application of formal concept lattices, in combination with traditional statistical tests, to visualise the sensory attributes of a big data set of some 7,000 Chenin blanc and Sauvignon blanc wines. Complexity was identified as an important driver of style in hereto uncharacterised Chenin blanc, and the sensory cues for specific styles were identified. This is the first study to apply these methods for the purpose of identifying styles within varietal wines. More generally, our interactive data visualisation and mining driven approach opens up new investigations towards better understanding of the complex field of sensory science.
日益增多的葡萄酒感官描述的公开数据量提出了一个问题,即这些数据源是否可以被挖掘出来,以提取关于葡萄酒感官特性的有意义的领域特定信息。我们介绍了形式概念格的一种新应用,结合传统的统计检验,以可视化大约 7000 种白诗南和长相思葡萄酒的大数据集的感官属性。复杂性被确定为迄今未被描述的白诗南风格的一个重要驱动因素,并且确定了特定风格的感官线索。这是首次应用这些方法来识别品种葡萄酒中的风格。更一般地说,我们的交互式数据可视化和挖掘驱动的方法为更好地理解感官科学这一复杂领域开辟了新的研究途径。