Suppr超能文献

增材制造 Ti6Al4V 支架在拉-拉、拉-压和压-压疲劳载荷下的疲劳寿命。

Fatigue life of additively manufactured Ti6Al4V scaffolds under tension-tension, tension-compression and compression-compression fatigue load.

机构信息

3D Systems - LayerWise NV, Grauwmeer 14, Leuven, Belgium.

KU Leuven Department of Materials Engineering, Kasteelpark Arenberg 44, Leuven, Belgium.

出版信息

Sci Rep. 2018 Mar 21;8(1):4957. doi: 10.1038/s41598-018-23414-2.

Abstract

Mechanical performance of additively manufactured (AM) Ti6Al4V scaffolds has mostly been studied in uniaxial compression. However, in real-life applications, more complex load conditions occur. To address this, a novel sample geometry was designed, tested and analyzed in this work. The new scaffold geometry, with porosity gradient between the solid ends and scaffold middle, was successfully used for quasi-static tension, tension-tension (R = 0.1), tension-compression (R = -1) and compression-compression (R = 10) fatigue tests. Results show that global loading in tension-tension leads to a decreased fatigue performance compared to global loading in compression-compression. This difference in fatigue life can be understood fairly well by approximating the local tensile stress amplitudes in the struts near the nodes. Local stress based Haigh diagrams were constructed to provide more insight in the fatigue behavior. When fatigue life is interpreted in terms of local stresses, the behavior of single struts is shown to be qualitatively the same as bulk Ti6Al4V. Compression-compression and tension-tension fatigue regimes lead to a shorter fatigue life than fully reversed loading due to the presence of a mean local tensile stress. Fractographic analysis showed that most fracture sites were located close to the nodes, where the highest tensile stresses are located.

摘要

增材制造(AM)Ti6Al4V 支架的力学性能主要在单轴压缩下进行研究。然而,在实际应用中,会出现更复杂的载荷情况。为了解决这个问题,本工作设计、测试和分析了一种新颖的样品几何形状。具有实心端和支架中间之间的孔隙率梯度的新型支架几何形状成功用于准静态拉伸、拉伸-拉伸(R=0.1)、拉伸-压缩(R=-1)和压缩-压缩(R=10)疲劳试验。结果表明,与压缩-压缩中的整体加载相比,拉伸-拉伸中的整体加载会导致疲劳性能降低。通过近似节点附近支柱中的局部拉伸应力幅度,可以很好地理解这种疲劳寿命的差异。构建了基于局部应力的 Haigh 图,以提供对疲劳行为的更多了解。当根据局部应力解释疲劳寿命时,单根支柱的行为与整体 Ti6Al4V 相似。由于存在平均局部拉伸应力,压缩-压缩和拉伸-拉伸疲劳区会导致疲劳寿命比完全反向加载更短。断口分析表明,大多数断裂部位位于节点附近,即拉伸应力最高的部位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce20/5862841/55cff85a38d8/41598_2018_23414_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验