Suppr超能文献

渡鸦的食物叫声表明了发出者的年龄和性别。

Raven food calls indicate sender's age and sex.

作者信息

Boeckle Markus, Szipl Georgine, Bugnyar Thomas

机构信息

1Department of Cognitive Biology, University of Vienna, Vienna, Austria.

2Konrad Lorenz Forschungsstelle, Core Facility, University of Vienna, Gruenau im Almtal, Austria.

出版信息

Front Zool. 2018 Mar 13;15:5. doi: 10.1186/s12983-018-0255-z. eCollection 2018.

Abstract

BACKGROUND

Acoustic parameters of animal signals have been shown to correlate with various phenotypic characteristics of the sender. These acoustic characteristics can be learned and categorized and thus are a basis for perceivers' recognition abilities. One of the most demanding capacities is individual recognition, achievable only after repeated interactions with the same individual. Still, class-level recognition might be potentially important to perceivers who have not previously encountered callers but can classify unknown individuals according to the already learned categories. Especially for species with high fission-fusion dynamics that repeatedly encounter unknown individuals it may be advantageous to develop class-level recognition. We tested whether frequency-, temporal-, and amplitude-related acoustic parameters of vocalizations emitted by ravens, a species showing high fission-fusion dynamics in non-breeder aggregations, are connected to phenotypic characteristics and thus have the potential for class-level recognition.

RESULTS

The analysis of 418 food calls revealed that some components summarizing acoustic parameters were differentiated by age-classes and sex.

CONCLUSIONS

Together, the results provide evidence for the co-variation of vocal characteristics and respective sex and age categories, a prerequisite for class-level recognition in perceivers. Perceivers that are ignorant of the caller's identity can thus potentially recognize these class-level differences for decision-making processes in feeding contexts.

摘要

背景

动物信号的声学参数已被证明与信号发出者的各种表型特征相关。这些声学特征可以被学习和分类,因此是感知者识别能力的基础。最具挑战性的能力之一是个体识别,只有在与同一个体反复互动后才能实现。然而,类别层面的识别对于那些以前没有遇到过呼叫者但可以根据已经学到的类别对未知个体进行分类的感知者来说可能具有潜在的重要性。特别是对于具有高裂变-融合动态且反复遇到未知个体的物种,发展类别层面的识别可能是有利的。我们测试了乌鸦发出的叫声中与频率、时间和振幅相关的声学参数是否与表型特征相关,从而具有类别层面识别的潜力,乌鸦在非繁殖期聚集时表现出高裂变-融合动态。

结果

对418个食物叫声的分析表明,一些总结声学参数的成分在年龄组和性别上存在差异。

结论

这些结果共同为声音特征与相应性别和年龄类别的共同变化提供了证据,这是感知者进行类别层面识别的先决条件。因此,不了解呼叫者身份的感知者在进食情境的决策过程中可能能够识别这些类别层面的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a383/5848575/d53e9759efd6/12983_2018_255_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验