Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
J Chem Phys. 2018 Mar 21;148(11):114104. doi: 10.1063/1.5020436.
We present an implementation of analytical energy gradients for the explicitly correlated coupled cluster singles and doubles method with perturbative triples corrections [CCSD(T)-F12]. The accuracy of the CCSD(T)-F12 analytical gradient technique is demonstrated by computing equilibrium geometries for a set of closed-shell molecules containing first- and second-row elements. Near basis-set limit equilibrium geometries are obtained with triple-zeta correlation consistent basis sets. Various approximations in the F12 treatment are compared, and the effects of these are found to be small.
我们提出了一种用于解析计算完全相关耦合簇单双激发方法与微扰三体力修正[CCSD(T)-F12]的能量梯度的方法。通过计算一组包含第一和第二周期元素的闭壳分子的平衡几何形状,证明了 CCSD(T)-F12 解析梯度技术的准确性。使用三zeta 相关一致基组获得了接近基组极限的平衡几何形状。比较了 F12 处理中的各种近似,发现这些近似的影响很小。