Suppr超能文献

可扩展的电子相关方法。8. 具有对自然轨道的显式相关开壳耦合簇方法PNO-RCCSD(T)-F12和PNO-UCCSD(T)-F12。

Scalable Electron Correlation Methods. 8. Explicitly Correlated Open-Shell Coupled-Cluster with Pair Natural Orbitals PNO-RCCSD(T)-F12 and PNO-UCCSD(T)-F12.

作者信息

Ma Qianli, Werner Hans-Joachim

机构信息

Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.

出版信息

J Chem Theory Comput. 2021 Feb 9;17(2):902-926. doi: 10.1021/acs.jctc.0c01129. Epub 2021 Jan 6.

Abstract

We present explicitly correlated open-shell pair natural orbital local coupled-cluster methods, PNO-RCCSD(T)-F12 and PNO-UCCSD(T)-F12. The methods are extensions of our previously reported PNO-R/UCCSD methods (, , , 3135-3151, https://pubs.acs.org/doi/10.1021/acs.jctc.0c00192) with additions of explicit correlation and perturbative triples corrections. The explicit correlation treatment follows the spin-orbital CCSD-F12b theory using 3*A, which is found to yield comparable or better basis set convergence than the more rigorous 3C in computed ionization potentials and reaction energies using double- to quaduple-ζ basis sets. The perturbative triples correction is adapted from the spin-orbital (T) theory to use triples natural orbitals (TNOs). To address the coupling due to off-diagonal Fock matrix elements, the local triples amplitudes are iteratively solved using small domains of TNOs, and a semicanonical (T0) domain correction with larger domains is applied to reduce the domain errors. The performance of the methods is demonstrated through benchmark calculations on ionization potentials, radical stabilization energies, reaction energies of fragmentations and rearrangements in radical cations, and spin-state energy differences of iron complexes. For a few test sets where canonical calculations are feasible, PNO-RCCSD(T)-F12 results agree with the canonical ones to within 0.4 kcal mol, and this maximum error is reduced to below 0.2 kcal mol when large local domains are used. For larger systems, results using different thresholds for the local approximations are compared to demonstrate that 1 kcal mol level of accuracy can be achieved using our default settings. For a couple of difficult cases, it is demonstrated that the errors from individual approximations are only a fraction of 1 kcal mol, and the overall accuracy of the method does not rely on error compensations. In contrast to canonical calculations, the use of spin-orbitals does not lead to a significant increase of computational time and memory usage in the most expensive steps of PNO-R/UCCSD(T)-F12 calculations. The only exception is the iterative solution of the (T) amplitudes, which can be avoided without significant errors by using a perturbative treatment of the off-diagonal coupling, known as (T1) approximation. For most systems, even the semicanonical approximation (T0) leads only to small errors in relative energies. Our program is well parallelized and capable of computing accurate correlation energies for molecules with 100-200 atoms using augmented triple-ζ basis sets in less than a day of elapsed time on a small computer cluster.

摘要

我们提出了显式相关的开壳层对自然轨道局部耦合簇方法,即PNO-RCCSD(T)-F12和PNO-UCCSD(T)-F12。这些方法是我们之前报道的PNO-R/UCCSD方法([参考文献列表及链接])的扩展,增加了显式相关和微扰三重态校正。显式相关处理遵循使用3*A的自旋轨道CCSD-F12b理论,发现在使用双ζ到四ζ基组计算电离势和反应能量时,它产生的基组收敛性与更严格的3C相当或更好。微扰三重态校正改编自旋轨道(T)理论以使用三重态自然轨道(TNOs)。为了解决由于非对角Fock矩阵元引起的耦合问题,使用TNOs的小域迭代求解局部三重态振幅,并应用具有更大域的半规范(T0)域校正来减少域误差。通过对电离势、自由基稳定能、自由基阳离子中的裂解和重排反应能量以及铁配合物的自旋态能量差进行基准计算,证明了这些方法的性能。对于一些可行规范计算的测试集,PNO-RCCSD(T)-F12的结果与规范结果在0.4 kcal/mol以内一致,当使用大的局部域时,这个最大误差降低到0.2 kcal/mol以下。对于更大的系统,比较了使用不同局部近似阈值的结果,以证明使用我们的默认设置可以达到1 kcal/mol的精度水平。对于几个困难的情况,证明了各个近似的误差仅为1 kcal/mol的一小部分,并且该方法的整体精度不依赖于误差补偿。与规范计算相比,在PNO-R/UCCSD(T)-F12计算中最昂贵的步骤中,使用自旋轨道不会导致计算时间和内存使用显著增加。唯一的例外是(T)振幅的迭代求解,通过使用非对角耦合的微扰处理(称为(T1)近似)可以避免重大误差。对于大多数系统,即使是半规范近似(T0)在相对能量中也只会导致小误差。我们的程序具有良好的并行性,能够在小型计算机集群上不到一天的时间内,使用增强的三重ζ基组为具有100 - 200个原子的分子计算准确的相关能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验