Suppr超能文献

在缺乏白蛋白的情况下从体外推导出药物的肝脏清除率,到体内存在白蛋白的情况下:基于白蛋白介导的肝摄取理论的 2 种外推模型的比较评估及其局限性和机制见解。

Extrapolation of the Hepatic Clearance of Drugs in the Absence of Albumin In Vitro to That in the Presence of Albumin In Vivo: Comparative Assessement of 2 Extrapolation Models Based on the Albumin-Mediated Hepatic Uptake Theory and Limitations and Mechanistic Insights.

机构信息

Consultant Patrick Poulin Inc., Quebec City, Québec, Canada; School of Public Health, IRSPUM, Université de Montréal, Montréal, Québec, Canada.

School of Public Health, IRSPUM, Université de Montréal, Montréal, Québec, Canada.

出版信息

J Pharm Sci. 2018 Jul;107(7):1791-1797. doi: 10.1016/j.xphs.2018.03.012. Epub 2018 Mar 20.

Abstract

The extrapolation of hepatic clearance (CL) from data determined in an in vitro assay in the absence of albumin (ALB) to that in the presence of ALB in liver in vivo was often inaccurate using traditional in vitro-to-in vivo extrapolation (IVIVE) methods for drugs binding to the ALB. It is recognized that considering an ALB-facilitated hepatic uptake phenomenon in the IVIVE can improve the extrapolation. Therefore, the present study provides a comparison of 2 existing models that account for the ALB-facilitated hepatic uptake phenomenon in the IVIVE of CL. These models assume an interaction of the ALB-bound drug complex with the hepatocyte membrane that enhanced the dissociation of the drug from ALB to result in increased unbound intracellular drug levels available for metabolism or transporter-mediated elimination. One model refers to the old facilitated-dissociation model (FDM), which is based on a binding isotherm and necessitates knowing the specific input parameters of the interaction (i.e., relative capacity of the interaction, dissociation constant, number of binding sites, and ALB concentration). The other model is based on the same theory but is recent and more speculative although it presumes that each interaction between the ALB-drug complex and the hepatocyte surface would at all times enhance and deliver the dissociated bound drug moiety into the hepatocytes and therefore, has the advantage to use less binding information. Consequently, this second model simply consists of adjusting the unbound fraction determined in plasma in vitro of each drug (fu) with the real differential of ALB concentration between the plasma and liver in vivo to estimate the corresponding differential of ALB-drug complex also assumed available to deliver the unbound drug moiety for hepatic uptake in vivo versus in vitro. Application of these 2 models (FDM and fu) significantly improved the IVIVEs of CL of drugs, and hence, the next step was to compare these 2 models with the same data set. Recently published data on the hepatic uptake of 2 organic anions, namely 1-anilino-8-naphthalene sulfonate and pitavastatin, provide all binding information. As expected, the results indicate that these 2 models are conceptually and mathematically equivalent as well as they successfully predicted the experimentally determined ratios of the unbound intrinsic CL (CL) in the presence of ALB in vivo to that in the absence of ALB in vitro. However, the 2 models were equivalent particularly for pitavastatin because its ALB-drug complex showed a relevant capacity of interaction and dissociation with the hepatocyte membrane. Conversely, for 1-anilino-8-naphthalene sulfonate, the model of fu overestimated the ratio of unbound CL by contrast to the FDM model because its ALB-drug complex demonstrated a significantly lower capacity of interaction with the membrane. The rational is simply because the model of fu presumably assumed an important facilitated-uptake phenomenon for each drug, whereas the FDM model was derived from binding data specific to each drug. Overall, these 2 models are complementary, and all contribute toward achieving the same objective of quantifying the ALB-facilitated uptake phenomenon; however, the FDM model is more specific, but its application necessitates collecting more binding data compared with the model of fu that can be used prospectively to predict the maximal effect of the facilitated-hepatic uptake in IVIVE.

摘要

从不存在白蛋白(ALB)的体外测定中推断肝脏清除率(CL)到体内存在 ALB 时的肝脏清除率,使用传统的将体外数据外推到体内(IVIVE)方法往往不准确,因为这些方法不适用于与 ALB 结合的药物。人们认识到,在 IVIVE 中考虑 ALB 促进的肝摄取现象可以改善外推。因此,本研究比较了 2 种现有的模型,这些模型在 IVIVE 中考虑了 ALB 促进的肝摄取现象对 CL 的影响。这些模型假设 ALB 结合药物复合物与肝细胞膜相互作用,增强了药物从 ALB 中的解离,从而导致未结合的细胞内药物水平增加,可用于代谢或转运体介导的消除。一种模型是旧的促进解离模型(FDM),它基于结合等温线,需要了解相互作用的特定输入参数(即相互作用的相对容量、解离常数、结合位点数量和 ALB 浓度)。另一种模型基于相同的理论,但更具推测性,尽管它假设 ALB-药物复合物与肝细胞表面的每次相互作用都会增强并将解离的结合药物部分递送到肝细胞中,因此,它具有使用较少结合信息的优势。因此,第二种模型只是通过调整体外测定的每种药物的游离分数(fu),用体内实际的 ALB 浓度差来估计 ALB-药物复合物的相应差异,假设 ALB-药物复合物也可用于将未结合的药物部分递送至体内肝摄取。这两种模型(FDM 和 fu)的应用显著改善了药物的 IVIVE,因此,下一步是用相同的数据集比较这两种模型。最近发表的关于两种有机阴离子(即 1-苯胺基-8-萘磺酸盐和匹伐他汀)肝摄取的研究数据提供了所有的结合信息。正如预期的那样,结果表明,这两种模型在概念和数学上是等效的,并且它们成功地预测了实验确定的在体存在白蛋白时的游离内在 CL(CL)与在不存在白蛋白时的体外比值。然而,对于匹伐他汀,这两种模型是等效的,因为其 ALB-药物复合物与肝细胞膜具有相关的相互作用和解离能力。相反,对于 1-苯胺基-8-萘磺酸盐,fu 模型高估了未结合 CL 的比值,而与 FDM 模型相反,因为其 ALB-药物复合物与膜的相互作用能力显著降低。原因很简单,因为 fu 模型假定了每种药物的重要促进摄取现象,而 FDM 模型则是从特定于每种药物的结合数据中推导出来的。总的来说,这两种模型是互补的,都有助于实现量化 ALB 促进摄取现象的相同目标;然而,FDM 模型更具体,但与 fu 模型相比,其应用需要收集更多的结合数据,而 fu 模型可以前瞻性地用于预测促进肝摄取的最大效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验