Aw Alan J, Rosenberg Noah A
Mathematical and Computational Science Program, Stanford University, Stanford, CA, 94305, USA.
Department of Biology, Stanford University, Stanford, CA, 94305, USA.
J Math Biol. 2018 Sep;77(3):711-737. doi: 10.1007/s00285-018-1226-x. Epub 2018 Mar 22.
The homozygosity and the frequency of the most frequent allele at a polymorphic genetic locus have a close mathematical relationship, so that each quantity places a tight constraint on the other. We use the theory of majorization to provide a simplified derivation of the bounds on homozygosity J in terms of the frequency M of the most frequent allele. The method not only enables simpler derivations of known bounds on J in terms of M, it also produces analogous bounds on entropy statistics for genetic diversity and on homozygosity-like statistics that range in their emphasis on the most frequent allele in relation to other alleles. We illustrate the constraints on the statistics using data from human populations. The approach suggests the potential of the majorization method as a tool for deriving inequalities that characterize mathematical relationships between statistics in population genetics.
在一个多态性基因位点上,纯合性与最常见等位基因的频率存在密切的数学关系,以至于每个量都对另一个量施加了严格的限制。我们利用优超理论,根据最常见等位基因的频率(M),对纯合性(J)的界限进行了简化推导。该方法不仅能更简单地推导关于(J)与(M)的已知界限,还能为遗传多样性的熵统计量以及在强调最常见等位基因相对于其他等位基因方面有所不同的类纯合性统计量产生类似的界限。我们用人种群的数据说明了这些统计量的限制情况。该方法表明了优超方法作为推导描述群体遗传学中统计量之间数学关系的不等式的工具的潜力。