Suppr超能文献

纯合性与最常见等位基因频率之间的关系。

The relationship between homozygosity and the frequency of the most frequent allele.

作者信息

Rosenberg Noah A, Jakobsson Mattias

机构信息

Department of Human Genetics, Center for Computational Medicine and Biology, and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2218, USA.

出版信息

Genetics. 2008 Aug;179(4):2027-36. doi: 10.1534/genetics.107.084772. Epub 2008 Aug 9.

Abstract

Homozygosity is a commonly used summary of allele-frequency distributions at polymorphic loci. Because high-frequency alleles contribute disproportionately to the homozygosity of a locus, it often occurs that most homozygotes are homozygous for the most frequent allele. To assess the relationship between homozygosity and the highest allele frequency at a locus, for a given homozygosity value, we determine the lower and upper bounds on the frequency of the most frequent allele. These bounds suggest tight constraints on the frequency of the most frequent allele as a function of homozygosity, differing by at most 14 and having an average difference of 23 - pi(2)/18 approximately 0.1184. The close connection between homozygosity and the frequency of the most frequent allele-which we illustrate using allele frequencies from human populations-has the consequence that when one of these two quantities is known, considerable information is available about the other quantity. This relationship also explains the similar performance of statistical tests of population-genetic models that rely on homozygosity and those that rely on the frequency of the most frequent allele, and it provides a basis for understanding the utility of extended homozygosity statistics in identifying haplotypes that have been elevated to high frequency as a result of positive selection.

摘要

纯合性是多态性位点上等位基因频率分布常用的一种汇总指标。由于高频等位基因对一个位点的纯合性贡献不成比例,所以经常会出现大多数纯合子是最常见等位基因的纯合子这种情况。为了评估一个位点上纯合性与最高等位基因频率之间的关系,对于给定的纯合性值,我们确定最常见等位基因频率的下限和上限。这些界限表明,作为纯合性的函数,最常见等位基因的频率受到严格限制,差异最多为14,平均差异为23 - π²/18,约为0.1184。我们用人种群的等位基因频率来说明的纯合性与最常见等位基因频率之间的紧密联系,其结果是当这两个量中的一个已知时,就可以获得关于另一个量的大量信息。这种关系还解释了依赖纯合性的群体遗传模型统计检验与依赖最常见等位基因频率的统计检验表现相似的原因,并且它为理解扩展纯合性统计量在识别由于正选择而频率升高的单倍型中的效用提供了基础。

相似文献

1
The relationship between homozygosity and the frequency of the most frequent allele.
Genetics. 2008 Aug;179(4):2027-36. doi: 10.1534/genetics.107.084772. Epub 2008 Aug 9.
2
Bounding measures of genetic similarity and diversity using majorization.
J Math Biol. 2018 Sep;77(3):711-737. doi: 10.1007/s00285-018-1226-x. Epub 2018 Mar 22.
3
Refining the relationship between homozygosity and the frequency of the most frequent allele.
J Math Biol. 2012 Jan;64(1-2):87-108. doi: 10.1007/s00285-011-0406-8. Epub 2011 Feb 9.
4
The relationship between F(ST) and the frequency of the most frequent allele.
Genetics. 2013 Feb;193(2):515-28. doi: 10.1534/genetics.112.144758. Epub 2012 Nov 19.
6
Allele associations reveal four prominent haplotypes at the human interleukin-6 (IL-6) locus.
Genes Immun. 2000 Oct;1(7):451-5. doi: 10.1038/sj.gene.6363699.
7
8
HLA class I (A, B, C) and class II (DRB1, DQA1, DQB1, DPB1) alleles and haplotypes in the Han from southern China.
Tissue Antigens. 2007 Dec;70(6):455-63. doi: 10.1111/j.1399-0039.2007.00932.x. Epub 2007 Sep 27.
9
10
Enhancing the mathematical properties of new haplotype homozygosity statistics for the detection of selective sweeps.
Theor Popul Biol. 2015 Jun;102:94-101. doi: 10.1016/j.tpb.2015.04.001. Epub 2015 Apr 16.

引用本文的文献

1
Mathematical bounds on r and the effect size in case-control genome-wide association studies.
Theor Popul Biol. 2025 Aug;164:1-11. doi: 10.1016/j.tpb.2025.04.003. Epub 2025 May 15.
2
Mathematical bounds on and the effect size in case-control genome-wide association studies.
bioRxiv. 2024 Dec 17:2024.12.17.628943. doi: 10.1101/2024.12.17.628943.
3
Mathematical constraints on a family of biodiversity measures via connections with Rényi entropy.
Biosystems. 2024 Mar;237:105153. doi: 10.1016/j.biosystems.2024.105153. Epub 2024 Feb 28.
5
Mathematical constraints on : multiallelic markers in arbitrarily many populations.
Philos Trans R Soc Lond B Biol Sci. 2022 Jun 6;377(1852):20200414. doi: 10.1098/rstb.2020.0414. Epub 2022 Apr 18.
6
Measures of care fragmentation: Mathematical insights from population genetics.
Health Serv Res. 2020 Apr;55(2):318-327. doi: 10.1111/1475-6773.13263. Epub 2020 Jan 22.
8
Bounding measures of genetic similarity and diversity using majorization.
J Math Biol. 2018 Sep;77(3):711-737. doi: 10.1007/s00285-018-1226-x. Epub 2018 Mar 22.
9
Mathematical Constraints on : Biallelic Markers in Arbitrarily Many Populations.
Genetics. 2017 Jul;206(3):1581-1600. doi: 10.1534/genetics.116.199141. Epub 2017 May 5.
10
Enhancing the mathematical properties of new haplotype homozygosity statistics for the detection of selective sweeps.
Theor Popul Biol. 2015 Jun;102:94-101. doi: 10.1016/j.tpb.2015.04.001. Epub 2015 Apr 16.

本文引用的文献

1
A new approach for using genome scans to detect recent positive selection in the human genome.
PLoS Biol. 2007 Jul;5(7):e171. doi: 10.1371/journal.pbio.0050171. Epub 2007 Jun 19.
2
Comparisons of site- and haplotype-frequency methods for detecting positive selection.
Mol Biol Evol. 2007 Jul;24(7):1562-74. doi: 10.1093/molbev/msm078. Epub 2007 Apr 21.
3
The homozygosity test of neutrality.
Genetics. 1978 Feb;88(2):405-17. doi: 10.1093/genetics/88.2.405.
4
A nonparametric test reveals selection for rapid flowering in the Arabidopsis genome.
PLoS Biol. 2006 May;4(5):e137. doi: 10.1371/journal.pbio.0040137. Epub 2006 Apr 25.
5
A map of recent positive selection in the human genome.
PLoS Biol. 2006 Mar;4(3):e72. doi: 10.1371/journal.pbio.0040072. Epub 2006 Mar 7.
6
Clines, clusters, and the effect of study design on the inference of human population structure.
PLoS Genet. 2005 Dec;1(6):e70. doi: 10.1371/journal.pgen.0010070. Epub 2005 Dec 9.
7
A standardized genetic differentiation measure.
Evolution. 2005 Aug;59(8):1633-8.
8
Statistical tests of the coalescent model based on the haplotype frequency distribution and the number of segregating sites.
Genetics. 2005 Mar;169(3):1763-77. doi: 10.1534/genetics.104.032219. Epub 2005 Jan 16.
9
Human genetic diversity and the nonexistence of biological races.
Hum Biol. 2003 Aug;75(4):449-71. doi: 10.1353/hub.2003.0058.
10
Detecting recent positive selection in the human genome from haplotype structure.
Nature. 2002 Oct 24;419(6909):832-7. doi: 10.1038/nature01140. Epub 2002 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验