Suppr超能文献

脑肿瘤中葡萄糖及其类似物的化学交换敏感型自旋锁定(CESL)MRI

Chemical exchange-sensitive spin-lock (CESL) MRI of glucose and analogs in brain tumors.

机构信息

Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania.

Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.

出版信息

Magn Reson Med. 2018 Aug;80(2):488-495. doi: 10.1002/mrm.27183. Epub 2018 Mar 23.

Abstract

PURPOSE

Glucose uptake and metabolism can be measured by chemical exchange-sensitive spin-lock (CESL) MRI with an administration of glucose or its analogs. This study investigates the sensitivity, the spatiotemporal characteristics, and the signal source of glucoCESL with a 9L rat brain tumor model.

METHODS

Dynamic CESL MRI with intravenous injection of D-glucose, 2-deoxy-D-glucose (2DG), and L-glucose were measured and compared with gadolinium-based dynamic contrast-enhanced (DCE) MRI.

RESULTS

The CESL signals with an injection of glucose or analogs have faster and larger changes in tumors than normal brain tissue. In tumors, the CESL signal with 2DG injection has larger and slower peak response than that with D-glucose due to the accumulation of 2DG and 2DG-6-phosphate in the intracellular compartment, whereas L-glucose, which cannot be transported intracellularly by glucose transporters, only induces a small change. The initial glucoCESL maps (< 4 minutes) are qualitatively similar to DCE maps, whereas later maps (> 4 minutes) show more widespread responses. The rise times of D-glucose-CESL and 2DG-CESL signals in the tumor are slower than that of DCE. Our data suggest that the initial CESL contrast primarily reflects a passive increase of glucose content in the extracellular space of tumors due to a higher vascular permeability, whereas the later period may have a significant contribution from the uptake/metabolism of glucose in the intracellular compartment.

CONCLUSIONS

Our results demonstrate that glucoCESL MRI has both extracellular and intracellular contributions, and can be a useful tool for measurements of both vascular permeability and glucose uptake in tumors.

摘要

目的

通过给予葡萄糖或其类似物,化学交换敏感的自旋锁定(CESL)MRI 可测量葡萄糖摄取和代谢。本研究利用 9L 大鼠脑肿瘤模型,探讨了 glucoCESL 的灵敏度、时空特征和信号源。

方法

对静脉注射 D-葡萄糖、2-脱氧-D-葡萄糖(2DG)和 L-葡萄糖的动态 CESL MRI 进行了测量,并与基于钆的动态对比增强(DCE)MRI 进行了比较。

结果

与正常脑组织相比,肿瘤中葡萄糖或类似物注射后的 CESL 信号变化更快、幅度更大。在肿瘤中,由于 2DG 和 2DG-6-磷酸在细胞内隔室中的积累,2DG 注射后的 CESL 信号峰值响应更大、速度更慢,而不能通过葡萄糖转运蛋白转运到细胞内的 L-葡萄糖仅引起较小的变化。初始 glucoCESL 图谱(<4 分钟)与 DCE 图谱定性相似,而后期图谱(>4 分钟)显示出更广泛的反应。肿瘤中 D-葡萄糖-CESL 和 2DG-CESL 信号的上升时间比 DCE 慢。我们的数据表明,初始 CESL 对比主要反映了由于血管通透性较高,肿瘤细胞外空间中葡萄糖含量的被动增加,而后期可能与细胞内葡萄糖的摄取/代谢有显著贡献。

结论

我们的结果表明,glucoCESL MRI 具有细胞外和细胞内的双重贡献,可作为测量肿瘤血管通透性和葡萄糖摄取的有用工具。

相似文献

1
Chemical exchange-sensitive spin-lock (CESL) MRI of glucose and analogs in brain tumors.
Magn Reson Med. 2018 Aug;80(2):488-495. doi: 10.1002/mrm.27183. Epub 2018 Mar 23.
3
Mapping brain glucose uptake with chemical exchange-sensitive spin-lock magnetic resonance imaging.
J Cereb Blood Flow Metab. 2014 Aug;34(8):1402-10. doi: 10.1038/jcbfm.2014.97. Epub 2014 May 28.
4
Adiabatically prepared spin-lock approach for T1ρ-based dynamic glucose enhanced MRI at ultrahigh fields.
Magn Reson Med. 2017 Jul;78(1):215-225. doi: 10.1002/mrm.26370. Epub 2016 Aug 13.
6
Measurement of regional cerebral glucose uptake by magnetic resonance spin-lock imaging.
Magn Reson Imaging. 2014 Nov;32(9):1078-84. doi: 10.1016/j.mri.2014.06.002. Epub 2014 Jun 21.
7
Chemical exchange sensitive MRI of glucose uptake using xylose as a contrast agent.
Magn Reson Med. 2021 Apr;85(4):1953-1961. doi: 10.1002/mrm.28557. Epub 2020 Oct 26.
8
Dynamic Glucose-Enhanced MR Imaging.
Magn Reson Imaging Clin N Am. 2021 Feb;29(1):77-81. doi: 10.1016/j.mric.2020.09.009. Epub 2020 Nov 2.
9
Fast and Quantitative T1ρ-weighted Dynamic Glucose Enhanced MRI.
Sci Rep. 2017 Feb 7;7:42093. doi: 10.1038/srep42093.
10
Chemical exchange-sensitive spin-lock MRI of glucose analog 3-O-methyl-d-glucose in normal and ischemic brain.
J Cereb Blood Flow Metab. 2018 May;38(5):869-880. doi: 10.1177/0271678X17707419. Epub 2017 May 9.

引用本文的文献

2
Dynamic glucose enhanced imaging using direct water saturation.
Magn Reson Med. 2025 Jul;94(1):15-27. doi: 10.1002/mrm.30447. Epub 2025 Mar 17.
4
Glymphatic influx and clearance are perturbed in Huntington's disease.
JCI Insight. 2024 Oct 22;9(20):e172286. doi: 10.1172/jci.insight.172286.
5
Amide proton transfer MRI at 9.4 T for differentiating tissue acidosis in a rodent model of ischemic stroke.
Magn Reson Med. 2024 Nov;92(5):2140-2148. doi: 10.1002/mrm.30194. Epub 2024 Jun 23.
6
Exploring neurodegenerative disorders using advanced magnetic resonance imaging of the glymphatic system.
Front Psychiatry. 2024 Apr 8;15:1368489. doi: 10.3389/fpsyt.2024.1368489. eCollection 2024.
7
Effect of inhaled oxygen level on dynamic glucose-enhanced MRI in mouse brain.
Magn Reson Med. 2024 Jul;92(1):57-68. doi: 10.1002/mrm.30035. Epub 2024 Feb 2.
8
Adjustment of rotation and saturation effects (AROSE) for CEST imaging.
Magn Reson Med. 2024 Mar;91(3):1016-1029. doi: 10.1002/mrm.29938. Epub 2023 Nov 27.
9
An update on liver chemical exchange saturation transfer imaging with a focus on clinical translation.
Quant Imaging Med Surg. 2023 Jul 1;13(7):4057-4076. doi: 10.21037/qims-23-379. Epub 2023 Jun 8.
10
In vivo methods for imaging blood-brain barrier function and dysfunction.
Eur J Nucl Med Mol Imaging. 2023 Mar;50(4):1051-1083. doi: 10.1007/s00259-022-05997-1. Epub 2022 Nov 28.

本文引用的文献

1
T1ρ-weighted Dynamic Glucose-enhanced MR Imaging in the Human Brain.
Radiology. 2017 Dec;285(3):914-922. doi: 10.1148/radiol.2017162351. Epub 2017 Jun 16.
2
Chemical exchange-sensitive spin-lock MRI of glucose analog 3-O-methyl-d-glucose in normal and ischemic brain.
J Cereb Blood Flow Metab. 2018 May;38(5):869-880. doi: 10.1177/0271678X17707419. Epub 2017 May 9.
3
Spin-lock imaging of exogenous exchange-based contrast agents to assess tissue pH.
Magn Reson Med. 2018 Jan;79(1):298-305. doi: 10.1002/mrm.26681. Epub 2017 Mar 20.
4
Fast and Quantitative T1ρ-weighted Dynamic Glucose Enhanced MRI.
Sci Rep. 2017 Feb 7;7:42093. doi: 10.1038/srep42093.
6
Adiabatically prepared spin-lock approach for T1ρ-based dynamic glucose enhanced MRI at ultrahigh fields.
Magn Reson Med. 2017 Jul;78(1):215-225. doi: 10.1002/mrm.26370. Epub 2016 Aug 13.
10
Residual or retained gadolinium: practical implications for radiologists and our patients.
Radiology. 2015 Jun;275(3):630-4. doi: 10.1148/radiol.2015150805. Epub 2015 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验