Paca Athandwe M, Ajibade Peter A
School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.
Nanomaterials (Basel). 2018 Mar 23;8(4):187. doi: 10.3390/nano8040187.
In this study, Fe(II) complexes of phenyldithiocarbamate, dimethyldithiocarbamate and imidazolyldithiocarbamate were used as single-source precursors to prepare iron sulphide nanoparticles by thermolysis in oleic acid/octadecylamine (ODA) at 180 °C. The nanoparticles were dispersed into hydroxyethyl cellulose (HEC) to prepare iron sulphide/HEC nanocomposites. Ultraviolet-Visible (UV-Vis), Photoluminescence (PL), Fourier Transform Infrared (FTIR), powder X-ray diffraction (pXRD), high-resolution transmission electron microscopy (HRTEM), Field emission scanning electron microscopy (FESEM), and energy dispersive X-ray spectroscopy (EDS) were used to characterize the iron sulphide nanoparticles and corresponding HEC nanocomposites. The absorption spectra studies revealed that the nanoparticles were blue shifted due to quantum confinement and the optical band gaps of the nanoparticles are 4.85 eV for FeS1, 4.36 eV for FeS2, and 4.77 eV for FeS3. The emission maxima are red-shifted and broader for the nanoparticles prepared from phenyldithiocarbamate. Rod-like and spherically shaped iron sulphide particles were observed from the HRTEM images. The crystallite sizes from the HRTEM images are 23.90-38.89 nm for FeS1, 4.50-10.50 nm for FeS2, and 6.05-6.19 nm for FeS3 iron sulphide nanoparticles, respectively. pXRD diffraction patterns confirmed that FeS1 is in the pyrrhotite-4M crystalline phase, FeS2 is in the pyrrhotite phase, and FeS3 is in the troilite phase of iron sulphide. The phases of the iron sulphide nanoparticles indicate that the nature of the precursor complex affects the obtained crystalline phase. FTIR spectra studies confirmed the incorporation of the nanoparticles in the HEC matrix by the slight shift of the O-H and C-O bonds and the intense peaks on the nanoparticles. FESEM images of the iron sulphide nanoparticles showed flake-like or leaf-like morphologies with some hollow spheres. The EDS confirmed the formation of iron sulphide nanoparticles by showing the peaks of Fe and S.
在本研究中,苯基二硫代氨基甲酸盐、二甲基二硫代氨基甲酸盐和咪唑基二硫代氨基甲酸盐的亚铁(II)配合物被用作单源前驱体,通过在180℃下于油酸/十八胺(ODA)中热解来制备硫化铁纳米颗粒。将这些纳米颗粒分散到羟乙基纤维素(HEC)中,以制备硫化铁/HEC纳米复合材料。利用紫外-可见(UV-Vis)光谱、光致发光(PL)光谱、傅里叶变换红外(FTIR)光谱、粉末X射线衍射(pXRD)、高分辨率透射电子显微镜(HRTEM)、场发射扫描电子显微镜(FESEM)和能量色散X射线光谱(EDS)对硫化铁纳米颗粒及相应的HEC纳米复合材料进行了表征。吸收光谱研究表明,由于量子限制,纳米颗粒发生了蓝移,并且FeS1纳米颗粒的光学带隙为4.85 eV,FeS2为4.36 eV,FeS3为4.77 eV。由苯基二硫代氨基甲酸盐制备的纳米颗粒的发射最大值发生红移且变宽。从HRTEM图像中观察到棒状和球形的硫化铁颗粒。对于FeS1硫化铁纳米颗粒,HRTEM图像中的微晶尺寸分别为23.90 - 38.89 nm,FeS2为4.50 - 10.50 nm,FeS3为6.05 - 6.19 nm。pXRD衍射图谱证实FeS1处于磁黄铁矿-4M晶相,FeS2处于磁黄铁矿相,FeS3处于硫化铁的陨硫铁相。硫化铁纳米颗粒的相表明前驱体配合物的性质会影响所得到的晶相。FTIR光谱研究通过O - H和C - O键的轻微位移以及纳米颗粒上的强峰证实了纳米颗粒掺入到了HEC基质中。硫化铁纳米颗粒的FESEM图像显示出片状或叶状形态以及一些空心球。EDS通过显示Fe和S的峰证实了硫化铁纳米颗粒的形成。