Suppr超能文献

利用众包智慧对机器人手术风格进行有意义的评估。

Meaningful Assessment of Robotic Surgical Style using the Wisdom of Crowds.

机构信息

Department of Electrical Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA.

Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.

出版信息

Int J Comput Assist Radiol Surg. 2018 Jul;13(7):1037-1048. doi: 10.1007/s11548-018-1738-2. Epub 2018 Mar 24.

Abstract

OBJECTIVE

Quantitative assessment of surgical skills is an important aspect of surgical training; however, the proposed metrics are sometimes difficult to interpret and may not capture the stylistic characteristics that define expertise. This study proposes a methodology for evaluating the surgical skill, based on metrics associated with stylistic adjectives, and evaluates the ability of this method to differentiate expertise levels.

METHODS

We recruited subjects from different expertise levels to perform training tasks on a surgical simulator. A lexicon of contrasting adjective pairs, based on important skills for robotic surgery, inspired by the global evaluative assessment of robotic skills tool, was developed. To validate the use of stylistic adjectives for surgical skill assessment, posture videos of the subjects performing the task, as well as videos of the task were rated by crowd-workers. Metrics associated with each adjective were found using kinematic and physiological measurements through correlation with the crowd-sourced adjective assignment ratings. To evaluate the chosen metrics' ability in distinguishing expertise levels, two classifiers were trained and tested using these metrics.

RESULTS

Crowd-assignment ratings for all adjectives were significantly correlated with expertise levels. The results indicate that naive Bayes classifier performs the best, with an accuracy of [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] when classifying into four, three, and two levels of expertise, respectively.

CONCLUSION

The proposed method is effective at mapping understandable adjectives of expertise to the stylistic movements and physiological response of trainees.

摘要

目的

手术技能的定量评估是外科培训的一个重要方面;然而,所提出的指标有时难以解释,并且可能无法捕捉到定义专业知识的风格特征。本研究提出了一种基于与风格形容词相关的指标来评估手术技能的方法,并评估了该方法区分专业水平能力。

方法

我们招募了来自不同专业水平的受试者,让他们在手术模拟器上进行培训任务。基于与机器人手术相关的重要技能,从全球机器人技能评估工具中汲取灵感,开发了一个对比形容词对词汇表。为了验证使用风格形容词进行手术技能评估的有效性,对受试者执行任务的姿势视频以及任务视频进行了众包评估。通过与众包形容词分配评分的相关性,使用运动学和生理测量找到了与每个形容词相关的指标。为了评估所选指标区分专业水平的能力,使用这些指标训练和测试了两个分类器。

结果

所有形容词的众包分配评分均与专业水平显著相关。结果表明,朴素贝叶斯分类器表现最佳,当分别将专家水平分为四级、三级和两级时,其准确率分别为[公式:见文本]、[公式:见文本]、[公式:见文本]和[公式:见文本]。

结论

所提出的方法能够有效地将可理解的专家形容词映射到学员的风格动作和生理反应上。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验