Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India.
Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India.
Int J Pharm. 2018 May 30;543(1-2):96-106. doi: 10.1016/j.ijpharm.2018.03.022. Epub 2018 Mar 22.
The present study aims at the development of cholesterol based lipopolymeric nanoparticles for improved entrapment, better cell penetration and improved pharmacokinetics of Tamoxifen (TMX). Self-assembling cholesterol grafted lipopolymer, mPEG-b-(CB-{g-chol}-co-LA) was synthesized from poly(ethyleneglycol)-block-2-methyl-2-carboxyl-propylenecarboxylic acid-co-poly (l-lactide) [mPEG-b-(CB-{g-COOH}-co-LA)] copolymer followed by carbodiimide coupling for attaching cholesterol. Lipopolymeric nanoparticles were prepared using o/w solvent evaporation technique, which were subsequently characterized to determine its particle size, entrapment efficiency, release pattern and compared with mPEG-PLA nanoparticles. Further, in order to assess the in vitro efficacy, cytotoxicity studies, uptake, apoptosis assay and cell cycle analysis were performed in breast cancer cell lines (MCF-7 and 4T1). Finally, the pharmacokinetic profile of TMX loaded mPEG-b-(CB-{g-chol}-co-LA) lipopolymeric nanoparticles was also performed. TMX loaded lipopolymeric nanoparticles of particle size 151.25 ± 3.74 (PDI 0.123) and entrapment efficiency of 73.62 ± 3.08% were formulated. The haemolytic index, protein binding and in vitro drug release of the optimized nanoparticles were found to be comparable to that of the TMX loaded mPEG-PLA nanoparticles. Lipopolymeric nanoparticles demonstrated improved IC values in breast cancer cells (22.2 μM in 4T1; 18.8 μM in MCF-7) than free TMX (27.6 μM and 23.5 μM respectively) and higher uptake efficiency. At IC values, TMX loaded lipopolymeric nanoparticles induced apoptosis and cell cycle arrest (G/G phase) to similar extent as that of free drug. Pharmacokinetic studies indicated ∼2.5-fold increase in the half-life (t) (p < 0.001) and ∼2.7-fold (p < 0.001) increase in the mean residence time (MRT) of TMX following incorporation into lipopolymeric nanoparticles. Thus, mPEG-b-(CB-{g-chol}-co-LA) lipopolymeric nanoparticles offer a more promising approach for delivery of Tamoxifen in breast cancer by improving drug internalization and prolonging the mean residence time of the drug indicating possibility of dose reduction and hence bypassing the adverse effects of TMX therapy.
本研究旨在开发基于胆固醇的脂聚合物纳米粒,以提高他莫昔芬(TMX)的包封率、更好的细胞穿透性和改善药代动力学特性。自组装胆固醇接枝脂聚合物 mPEG-b-(CB-{g-chol}-co-LA) 是由聚(乙二醇)-嵌段-2-甲基-2-羧基-丙基羧酸-co-聚(L-乳酸)[mPEG-b-(CB-{g-COOH}-co-LA)] 共聚物合成的,然后通过碳二亚胺偶联法连接胆固醇。脂聚合物纳米粒采用 o/w 溶剂蒸发技术制备,随后对其粒径、包封效率、释放模式进行了测定,并与 mPEG-PLA 纳米粒进行了比较。进一步,为了评估体外疗效,在乳腺癌细胞系(MCF-7 和 4T1)中进行了细胞毒性研究、摄取、凋亡测定和细胞周期分析。最后,还进行了载他莫昔芬 mPEG-b-(CB-{g-chol}-co-LA)脂聚合物纳米粒的药代动力学研究。载药粒径为 151.25±3.74(PDI 0.123),包封效率为 73.62±3.08%。优化后的纳米粒的溶血指数、蛋白结合和体外药物释放与载 TMX 的 mPEG-PLA 纳米粒相当。脂聚合物纳米粒在乳腺癌细胞中的 IC 值(4T1 中为 22.2 μM;MCF-7 中为 18.8 μM)低于游离 TMX(分别为 27.6 μM 和 23.5 μM),摄取效率更高。在 IC 值下,载药脂聚合物纳米粒诱导的凋亡和细胞周期阻滞(G/G 期)与游离药物相似。药代动力学研究表明,TMX 包载脂聚合物纳米粒后,半衰期(t)延长约 2.5 倍(p<0.001),平均驻留时间(MRT)延长约 2.7 倍(p<0.001)。因此,mPEG-b-(CB-{g-chol}-co-LA)脂聚合物纳米粒通过提高药物内化和延长药物的平均驻留时间,为他莫昔芬在乳腺癌中的传递提供了更有前途的方法,表明有可能减少剂量,从而避免他莫昔芬治疗的不良反应。
Mater Sci Eng C Mater Biol Appl. 2016-3
Artif Cells Nanomed Biotechnol. 2017-5
AAPS PharmSciTech. 2021-9-24
Molecules. 2020-9-22
Lipids Health Dis. 2019-6-10
Int J Biomater. 2018-8-23