文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

负载他莫昔芬的L-赖氨酸包被磁性氧化铁纳米颗粒在细胞周期阻滞及乳腺癌治疗抗癌活性方面具有高效性。

High efficacy of tamoxifen-loaded L-lysine coated magnetic iron oxide nanoparticles in cell cycle arrest and anti-cancer activity for breast cancer therapy.

作者信息

Rostami Soheila, Tafvizi Farzaneh, Kheiri Manjili Hamid Reza

机构信息

Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.

Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.

出版信息

Bioimpacts. 2022;12(4):301-313. doi: 10.34172/bi.2021.23337. Epub 2021 Dec 1.


DOI:10.34172/bi.2021.23337
PMID:35975200
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9376161/
Abstract

Due to the side effects of drugs, the development of nanoscale drug delivery systems has led to a significant improvement in medicinal therapies due to drug pharmacokinetics changes, decreased toxicity, and increased half-life of the drug. This study aimed to synthesize tamoxifen (TMX)-loaded L-lysine coated magnetic iron oxide nanoparticles as a nano-carrier to investigate its cytotoxic effects and anti-cancer properties against MCF-7 cancer cells. Magnetic FeO nanoparticles were synthesized and coated with L-lysine (F-Lys NPs). Then, TMX was loaded onto these NPs. The characteristics of synthesized nanoparticles (F-Lys-TMX NPs) were evaluated by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), differential scanning calorimetry (DSC), vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). The drug release was analyzed at pH 5.8 and pH 7.4. The MCF-7 cells were exposed to F-Lys-TMX NPs, F-Lys NPs, and TMX for 24, 48, and 72 hours. To evaluate the cytotoxic potential of designed nanoparticles, MTT and apoptosis assays, real-time PCR, and cell cycle analysis was carried out. The F-Lys-TMX NPs had spherical morphology with a size ranging from 9 to 30 nm. By increasing the nanoparticles concentration and treatment time, more cell proliferation inhibition and apoptosis induction were observed in F-Lys-TMX NPs-treated cells compared to the TMX. The expression levels of ERBB2, cyclin D1, and cyclin E genes were down-regulated and expression levels of the caspase-3 and caspase-9 genes were up-regulated. Studies on the drug release revealed a slow and controlled pH-dependent release of the nanoparticles. Cell cycle analysis indicated that F-Lys-TMX NPs could arrest the cells at the G0/G1 phase. The findings suggest that F-Lys-TMX NPs are more effective and have the potential for cell proliferation inhibition and apoptosis induction compared to the TMX. Hence, F-Lys-TMX NPs can be considered as an anti-cancer agent against MCF-7 breast cancer cells.

摘要

由于药物的副作用,纳米级药物递送系统的发展因药物药代动力学的改变、毒性降低和药物半衰期延长而使药物治疗有了显著改善。本研究旨在合成负载他莫昔芬(TMX)的L-赖氨酸包被的磁性氧化铁纳米颗粒作为纳米载体,以研究其对MCF-7癌细胞的细胞毒性作用和抗癌特性。合成磁性FeO纳米颗粒并用L-赖氨酸包被(F-Lys NPs)。然后,将TMX负载到这些纳米颗粒上。通过X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、动态光散射(DLS)、差示扫描量热法(DSC)、振动样品磁强计(VSM)和热重分析(TGA)对合成的纳米颗粒(F-Lys-TMX NPs)的特性进行评估。在pH 5.8和pH 7.4条件下分析药物释放情况。将MCF-7细胞分别暴露于F-Lys-TMX NPs、F-Lys NPs和TMX中24、48和72小时。为评估所设计纳米颗粒的细胞毒性潜力,进行了MTT和凋亡检测、实时PCR以及细胞周期分析。F-Lys-TMX NPs呈球形,尺寸范围为9至30 nm。与TMX相比,随着纳米颗粒浓度的增加和处理时间的延长,在F-Lys-TMX NPs处理的细胞中观察到更多的细胞增殖抑制和凋亡诱导。ERBB2、细胞周期蛋白D1和细胞周期蛋白E基因的表达水平下调,而半胱天冬酶-3和半胱天冬酶-9基因的表达水平上调。药物释放研究表明纳米颗粒具有缓慢且受pH值影响的可控释放特性。细胞周期分析表明F-Lys-TMX NPs可使细胞停滞在G0/G1期。研究结果表明,与TMX相比,F-Lys-TMX NPs更有效且具有抑制细胞增殖和诱导凋亡的潜力。因此,F-Lys-TMX NPs可被视为一种针对MCF-7乳腺癌细胞的抗癌剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/8faeed1a9db0/bi-12-301-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/caef1224d5e9/bi-12-301-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/7685d6ef0f72/bi-12-301-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/411c214f4c1e/bi-12-301-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/5ee6e7338410/bi-12-301-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/60ec5f7aece3/bi-12-301-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/6131f656404d/bi-12-301-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/63ce0b792563/bi-12-301-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/46dde3d37af2/bi-12-301-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/741c4f1444d3/bi-12-301-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/3a0bd878d95d/bi-12-301-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/2e304f949ff9/bi-12-301-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/8faeed1a9db0/bi-12-301-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/caef1224d5e9/bi-12-301-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/7685d6ef0f72/bi-12-301-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/411c214f4c1e/bi-12-301-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/5ee6e7338410/bi-12-301-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/60ec5f7aece3/bi-12-301-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/6131f656404d/bi-12-301-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/63ce0b792563/bi-12-301-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/46dde3d37af2/bi-12-301-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/741c4f1444d3/bi-12-301-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/3a0bd878d95d/bi-12-301-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/2e304f949ff9/bi-12-301-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adc/9376161/8faeed1a9db0/bi-12-301-g012.jpg

相似文献

[1]
High efficacy of tamoxifen-loaded L-lysine coated magnetic iron oxide nanoparticles in cell cycle arrest and anti-cancer activity for breast cancer therapy.

Bioimpacts. 2022

[2]
Synergistic effect of curcumin and tamoxifen loaded in pH-responsive gemini surfactant nanoparticles on breast cancer cells.

BMC Complement Med Ther. 2024-9-20

[3]
Methotrexate-conjugated L-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells.

Drug Dev Ind Pharm. 2018-6

[4]
Phenyl alanine & Tyrosine Amino acids Coated Magnetic Nanoparticles: Preparation and Toxicity study.

Drug Res (Stuttg). 2019-5

[5]
Preparation, characterization and in vitro anticancer activity of paclitaxel conjugated magnetic nanoparticles.

Drug Dev Ind Pharm. 2018-9-5

[6]
Theranostic nanoparticles based on magnetic nanoparticles: design, preparation, characterization, and evaluation as novel anticancer drug carrier and MRI contrast agent.

Drug Dev Ind Pharm. 2018-7-4

[7]
Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer.

Colloids Surf B Biointerfaces. 2013-1-31

[8]
Effective cellular internalization, cell cycle arrest and improved pharmacokinetics of Tamoxifen by cholesterol based lipopolymeric nanoparticles.

Int J Pharm. 2018-3-22

[9]
Release of a liver anticancer drug, sorafenib from its PVA/LDH- and PEG/LDH-coated iron oxide nanoparticles for drug delivery applications.

Sci Rep. 2020-12-9

[10]
Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug.

Bioorg Chem. 2018-1-2

引用本文的文献

[1]
Biosynthesis of iron oxide nanoparticles (FeONPs) using (L.) Hallier f. leaf extract; Their antibacterial, antioxidant, anti-inflammatory, anticancer activity on against MCF-7 breast cancer cell lines and Photocatalytic degradation.

3 Biotech. 2025-7

[2]
Cisplatin-loaded UiO-66-NH functionalized with folic acid enhances apoptotic activity and antiproliferative effects in MDA-MB-231 breast and A2780 ovarian cancer cells: An study.

Heliyon. 2025-2-14

[3]
Characterization of NAT, GST, and CYP2E1 Genetic Variation in Sub-Saharan African Populations: Implications for Treatment of Tuberculosis and Other Diseases.

Clin Pharmacol Ther. 2025-5

[4]
Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects.

Int J Mol Sci. 2024-11-8

[5]
Surface Engineering of Magnetic Iron Oxide Nanoparticles for Breast Cancer Diagnostics and Drug Delivery.

Int J Nanomedicine. 2024

[6]
Folic acid grafted mixed polymeric micelles as a targeted delivery strategy for tamoxifen citrate in treatment of breast cancer.

Drug Deliv Transl Res. 2024-4

[7]
Preparation and Evaluation of Tamoxifen-Conjugated, Eco-Friendly, Agar-Based Hybrid Magnetic Nanoparticles for Their Potential Use in Breast Cancer Treatment.

ACS Omega. 2023-7-14

[8]
Novel one-pot strategy for fabrication of a pH-Responsive bone-targeted drug self-frame delivery system for treatment of osteoporosis.

Mater Today Bio. 2023-6-3

[9]
Hypothesizing the Green Synthesis of Tamoxifen Loaded Magnetic Nanoparticles for the Treatment of Breast Cancer.

Curr Mol Med. 2024

[10]
Magneto-Mechanically Triggered Thick Films for Drug Delivery Micropumps.

Nanomaterials (Basel). 2022-10-13

本文引用的文献

[1]
Green-photodegradation of model pharmaceutical contaminations over biogenic FeO/Au nanocomposite and antimicrobial activity.

J Environ Manage. 2020-6-5

[2]
Synthesis and characterization of alginate nanocarrier encapsulating Artemisia ciniformis extract and evaluation of the cytotoxicity and apoptosis induction in AGS cell line.

Int J Biol Macromol. 2020-5-5

[3]
Silver using leaf extract: apoptosis induction in MCF-7 breast cancer cell line.

IET Nanobiotechnol. 2018-10

[4]
Effective cellular internalization, cell cycle arrest and improved pharmacokinetics of Tamoxifen by cholesterol based lipopolymeric nanoparticles.

Int J Pharm. 2018-3-22

[5]
Methotrexate-conjugated L-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells.

Drug Dev Ind Pharm. 2018-6

[6]
Facile Synthesis and Characterization of L-Aspartic Acid Coated Iron Oxide Magnetic Nanoparticles (IONPs) For Biomedical Applications.

Drug Res (Stuttg). 2018-5

[7]
Preparation and Characterization of Copolymeric Polymersomes for Protein Delivery.

Drug Res (Stuttg). 2017-8

[8]
Essential amino acid mixtures drive cancer cells to apoptosis through proteasome inhibition and autophagy activation.

FEBS J. 2017-6

[9]
Selective Estrogen Receptor Modulators.

Asian Spine J. 2016-8

[10]
Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels.

ACS Nano. 2016-7-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索