Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.
Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.
J Biol Chem. 2018 May 11;293(19):7222-7237. doi: 10.1074/jbc.RA118.001802. Epub 2018 Mar 26.
Clathrin-independent endocytosis (CIE) is a form of endocytosis that lacks a defined cytoplasmic machinery. Here, we asked whether glycan interactions, acting from the outside, could be a part of that endocytic machinery. We show that the perturbation of global cellular patterns of protein glycosylation by modulation of metabolic flux affects CIE. Interestingly, these changes in glycosylation had cargo-specific effects. For example, in HeLa cells, GlcNAc treatment, which increases glycan branching, increased major histocompatibility complex class I (MHCI) internalization but inhibited CIE of the glycoprotein CD59 molecule (CD59). The effects of knocking down the expression of galectin 3, a carbohydrate-binding protein and an important player in galectin-glycan interactions, were also cargo-specific and stimulated CD59 uptake. By contrast, inhibition of all galectin-glycan interactions by lactose inhibited CIE of both MHCI and CD59. None of these treatments affected clathrin-mediated endocytosis, implying that glycosylation changes specifically affect CIE. We also found that the galectin lattice tailors membrane fluidity and cell spreading. Furthermore, changes in membrane dynamics mediated by the galectin lattice affected macropinocytosis, an altered form of CIE, in HT1080 cells. Our results suggest that glycans play an important and nuanced role in CIE, with each cargo being affected uniquely by alterations in galectin and glycan profiles and their interactions. We conclude that galectin-driven effects exist on a continuum from stimulatory to inhibitory, with distinct CIE cargo proteins having unique response landscapes and with different cell types starting at different positions on these conceptual landscapes.
网格蛋白非依赖型内吞作用(CIE)是一种缺乏明确细胞质机制的内吞作用形式。在这里,我们询问从外部作用的糖基相互作用是否可以成为该内吞作用机制的一部分。我们表明,通过调节代谢通量来改变细胞整体蛋白质糖基化模式会影响 CIE。有趣的是,这些糖基化的变化具有特定于货物的作用。例如,在 HeLa 细胞中,GlcNAc 处理(增加糖基化分支)增加了主要组织相容性复合体 I(MHCI)的内化,但抑制了糖蛋白 CD59 分子(CD59)的 CIE。敲低半乳糖凝集素 3(一种碳水化合物结合蛋白,也是半乳糖-糖基相互作用中的重要参与者)的表达也具有特定于货物的作用,并刺激了 CD59 的摄取。相比之下,乳糖抑制所有半乳糖-糖基相互作用抑制了 MHCI 和 CD59 的 CIE。这些处理均不影响网格蛋白介导的内吞作用,这意味着糖基化变化特异性地影响 CIE。我们还发现半乳糖晶格改变了膜流动性和细胞铺展。此外,半乳糖晶格介导的膜动态变化影响了 HT1080 细胞中的巨胞饮作用(一种改变形式的 CIE)。我们的结果表明,聚糖在 CIE 中发挥着重要而微妙的作用,每个货物都受到半乳糖和聚糖谱及其相互作用的改变的独特影响。我们得出结论,半乳糖驱动的效应存在于从刺激到抑制的连续体中,具有独特响应景观的不同 CIE 货物蛋白,并且不同的细胞类型从这些概念景观上的不同位置开始。