Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada, V6T 1Z3.
The Center for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada, V6T 1Z3.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3378-E3387. doi: 10.1073/pnas.1717015115. Epub 2018 Mar 26.
() grows on host-derived cholesterol during infection. IpdAB, found in all steroid-degrading bacteria and a determinant of pathogenicity, has been implicated in the hydrolysis of the last steroid ring. Phylogenetic analyses revealed that IpdAB orthologs form a clade of CoA transferases (CoTs). In a coupled assay with a thiolase, IpdAB transformed the cholesterol catabolite ()-2-(2-carboxyethyl)-3-methyl-6-oxocyclohex-1-ene-1-carboxyl-CoA (COCHEA-CoA) and CoASH to 4-methyl-5-oxo-octanedioyl-CoA (MOODA-CoA) and acetyl-CoA with high specificity (/ = 5.8 ± 0.8 × 10 M⋅s). The structure of MOODA-CoA was consistent with IpdAB hydrolyzing COCHEA-CoA to a β-keto-thioester, a thiolase substrate. Contrary to characterized CoTs, IpdAB exhibited no activity toward small CoA thioesters. Further, IpdAB lacks the catalytic glutamate residue that is conserved in the β-subunit of characterized CoTs and a glutamyl-CoA intermediate was not trapped during turnover. By contrast, Glu105, conserved in the α-subunit of IpdAB, was essential for catalysis. A crystal structure of the IpdAB·COCHEA-CoA complex, solved to 1.4 Å, revealed that Glu105 is positioned to act as a catalytic base. Upon titration with COCHEA-CoA, the E105A variant accumulated a yellow-colored species (λ = 310 nm; = 0.4 ± 0.2 μM) typical of β-keto enolates. In the presence of DO, IpdAB catalyzed the deuteration of COCHEA-CoA adjacent to the hydroxylation site at rates consistent with Based on these data and additional IpdAB variants, we propose a retro-Claisen condensation-like mechanism for the IpdAB-mediated hydrolysis of COCHEA-CoA. This study expands the range of known reactions catalyzed by the CoT superfamily and provides mechanistic insight into an important determinant of pathogenesis.
() 在感染过程中利用宿主来源的胆固醇生长。IpdAB 存在于所有固醇降解细菌中,是致病性的决定因素,它参与了最后一个类固醇环的水解。系统发育分析表明,IpdAB 同源物形成了 CoA 转移酶 (CoT) 的一个分支。在与硫解酶的偶联测定中,IpdAB 将胆固醇代谢物 ()-2-(2-羧乙基)-3-甲基-6-氧代环己-1-烯-1-羧酸 CoA (COCHEA-CoA) 和 CoASH 转化为 4-甲基-5-氧代-辛二酸酰 CoA (MOODA-CoA) 和乙酰 CoA,具有很高的特异性 (/ = 5.8 ± 0.8 × 10 M⋅s)。MOODA-CoA 的结构与 IpdAB 将 COCHEA-CoA 水解为β-酮硫酯一致,这是硫解酶的底物。与已鉴定的 CoT 不同,IpdAB 对小 CoA 硫酯没有活性。此外,IpdAB 缺乏在已鉴定的 CoT 的β亚基中保守的催化谷氨酸残基,并且在周转过程中没有捕获到谷氨酰基-CoA 中间产物。相比之下,在 IpdAB 的α亚基中保守的谷氨酸 105 对于催化至关重要。IpdAB·COCHEA-CoA 复合物的晶体结构,解析到 1.4 Å,揭示了 Glu105 被定位为催化碱。当用 COCHEA-CoA 滴定时,E105A 变体积累了一种黄色物质(λ = 310nm; = 0.4 ± 0.2μM),这是β-酮烯醇化物的典型特征。在 DO 的存在下,IpdAB 以与羟基化位点相邻的 COCHEA-CoA 的氘化速率催化反应,这与速率一致。基于这些数据和其他 IpdAB 变体,我们提出了一个反-Claisen 缩合样机制来解释 IpdAB 介导的 COCHEA-CoA 水解。这项研究扩展了 CoT 超家族催化的已知反应范围,并为 发病机制的一个重要决定因素提供了机制见解。