Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan.
Institute of Fisheries Science, National Taiwan University, Taipei, 106, Taiwan.
Microb Biotechnol. 2022 Mar;15(3):949-966. doi: 10.1111/1751-7915.13921. Epub 2021 Sep 15.
Steroidal oestrogens (C ) are contaminants receiving increasing attention due to their endocrine-disrupting activities at sub-nanomolar concentrations. Although oestrogens can be eliminated through photodegradation, microbial function is critical for removing oestrogens from ecosystems devoid of sunlight exposure including activated sludge, soils and aquatic sediments. Actinobacteria were found to be key oestrogen degraders in manure-contaminated soils and estuarine sediments. Previously, we used the actinobacterium Rhodococcus sp. strain B50 as a model microorganism to identify two oxygenase genes, aedA and aedB, involved in the activation and subsequent cleavage of the estrogenic A-ring respectively. However, genes responsible for the downstream degradation of oestrogen A/B-rings remained completely unknown. In this study, we employed tiered comparative transcriptomics, gene disruption experiments and mass spectrometry-based metabolite profile analysis to identify oestrogen catabolic genes. We observed the up-regulation of thiolase-encoding aedF and aedK in the transcriptome of strain B50 grown with oestrone. Consistently, two downstream oestrogenic metabolites, 5-oxo-4-norestrogenic acid (C ) and 2,3,4-trinorestrogenic acid (C ), were accumulated in aedF- and aedK-disrupted strain B50 cultures. Disruption of fadD3 [3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP)-coenzyme A-ligase gene] in strain B50 resulted in apparent HIP accumulation in oestrone-fed cultures, indicating the essential role of fadD3 in actinobacterial oestrogen degradation. In addition, we detected a unique meta-cleavage product, 4,5-seco-estrogenic acid (C ), during actinobacterial oestrogen degradation. Differentiating the oestrogenic metabolite profile and degradation genes of actinobacteria and proteobacteria enables the cost-effective and time-saving identification of potential oestrogen degraders in various ecosystems through liquid chromatography-mass spectrometry analysis and polymerase chain reaction-based functional assays.
甾体雌激素(C )是一种污染物,由于其在亚纳摩尔浓度下的内分泌干扰活性而受到越来越多的关注。尽管雌激素可以通过光降解去除,但微生物的功能对于去除阳光照射不足的生态系统中的雌激素(包括活性污泥、土壤和水生沉积物)至关重要。放线菌被发现是受粪便污染的土壤和河口沉积物中关键的雌激素降解菌。此前,我们使用放线菌 Rhodococcus sp. 菌株 B50 作为模式微生物,鉴定了两个分别参与雌激素 A 环激活和随后裂解的加氧酶基因 aedA 和 aedB。然而,雌激素 A/B 环下游降解的相关基因仍然完全未知。在这项研究中,我们采用分层比较转录组学、基因敲除实验和基于质谱的代谢物谱分析来鉴定雌激素代谢基因。我们观察到雌激素 B50 培养物中 aedF 和 aedK 编码硫解酶的转录上调。一致地,两种雌激素下游代谢物,5-氧代-4-非雌激素酸(C )和 2,3,4-三非雌激素酸(C ),在 aedF 和 aedK 敲除的 B50 培养物中积累。在 B50 菌株中敲除 fadD3 [3aα-H-4α(3'-丙酸盐)-7aβ-甲基六氢-1,5-茚二酮(HIP)-辅酶 A 连接酶基因]导致在雌激素喂养的培养物中明显的 HIP 积累,表明 fadD3 在放线菌雌激素降解中的重要作用。此外,我们在放线菌雌激素降解过程中检测到一种独特的间裂产物,4,5-去甲雌激素酸(C )。区分放线菌和变形菌的雌激素代谢产物谱和降解基因,可通过液相色谱-质谱分析和聚合酶链反应为基础的功能检测,在各种生态系统中实现具有成本效益和节省时间的潜在雌激素降解菌的识别。