Sortase 连接使 GPCR 磷酸化均一化,从而揭示β-arrestin 偶联的多样性。
Sortase ligation enables homogeneous GPCR phosphorylation to reveal diversity in β-arrestin coupling.
机构信息
Department of Medicine, Duke University Medical Center, Durham, NC 27710.
Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710.
出版信息
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):3834-3839. doi: 10.1073/pnas.1722336115. Epub 2018 Mar 26.
The ability of G protein-coupled receptors (GPCRs) to initiate complex cascades of cellular signaling is governed by the sequential coupling of three main transducer proteins, G protein, GPCR kinase (GRK), and β-arrestin. Mounting evidence indicates these transducers all have distinct conformational preferences and binding modes. However, interrogating each transducer's mechanism of interaction with GPCRs has been complicated by the interplay of transducer-mediated signaling events. For example, GRK-mediated receptor phosphorylation recruits and induces conformational changes in β-arrestin, which facilitates coupling to the GPCR transmembrane core. Here we compare the allosteric interactions of G proteins and β-arrestins with GPCRs' transmembrane cores by using the enzyme sortase to ligate a synthetic phosphorylated peptide onto the carboxyl terminus of three different receptors. Phosphopeptide ligation onto the β-adrenergic receptor (βAR) allows stabilization of a high-affinity receptor active state by β-arrestin1, permitting us to define elements in the βAR and β-arrestin1 that contribute to the receptor transmembrane core interaction. Interestingly, ligation of the identical phosphopeptide onto the βAR, the muscarinic acetylcholine receptor 2 and the μ-opioid receptor reveals that the ability of β-arrestin1 to enhance agonist binding relative to G protein differs substantially among receptors. Furthermore, strong allosteric coupling of β-arrestin1 correlates with its ability to attenuate, or "desensitize," G protein activation in vitro. Sortase ligation thus provides a versatile method to introduce complex, defined phosphorylation patterns into GPCRs, and analogous strategies could be applied to other classes of posttranslationally modified proteins. These homogeneously phosphorylated GPCRs provide an innovative means to systematically study receptor-transducer interactions.
G 蛋白偶联受体 (GPCRs) 能够启动复杂的细胞信号级联反应,这是由三种主要转导蛋白的顺序偶联来控制的,这三种转导蛋白分别是 G 蛋白、GPCR 激酶 (GRK) 和β-arrestin。越来越多的证据表明,这些转导蛋白都具有不同的构象偏好和结合模式。然而,由于转导介导的信号事件的相互作用,研究每种转导蛋白与 GPCR 相互作用的机制变得复杂。例如,GRK 介导的受体磷酸化会招募并诱导β-arrestin 的构象变化,从而促进与 GPCR 跨膜核心的偶联。在这里,我们通过使用酶 sortase 将合成的磷酸化肽连接到三个不同受体的羧基末端,比较了 G 蛋白和β-arrestin 与 GPCR 跨膜核心的变构相互作用。β-肾上腺素能受体 (βAR) 上磷酸肽的连接允许β-arrestin1 稳定高亲和力的受体活性状态,使我们能够确定 βAR 和β-arrestin1 中有助于受体跨膜核心相互作用的元件。有趣的是,将相同的磷酸肽连接到βAR、毒蕈碱乙酰胆碱受体 2 和μ-阿片受体上,揭示了β-arrestin1 相对于 G 蛋白增强激动剂结合的能力在受体之间有很大差异。此外,β-arrestin1 的强变构偶联与其在体外减弱或“脱敏”G 蛋白激活的能力相关。因此,sortase 连接提供了一种将复杂、定义明确的磷酸化模式引入 GPCR 的多功能方法,类似的策略可以应用于其他类别的翻译后修饰蛋白。这些均匀磷酸化的 GPCR 为系统研究受体-转导蛋白相互作用提供了一种创新手段。
相似文献
Proc Natl Acad Sci U S A. 2018-3-26
J Biol Chem. 2020-12-4
引用本文的文献
Nat Commun. 2025-5-29
Proc Natl Acad Sci U S A. 2025-5-20
Proc Natl Acad Sci U S A. 2025-3-18
Nat Chem Biol. 2024-12
Mol Pharmacol. 2024-5-17
本文引用的文献
Biochemistry. 2017-10-24
Pharmacol Rev. 2017-7
Proc Natl Acad Sci U S A. 2017-3-7
Cell Signal. 2017-1-28
Nat Commun. 2016-11-9
Nat Struct Mol Biol. 2016-6
J Biol Chem. 2016-4-22
Nature. 2015-8-20