Suppr超能文献

主动肌肉反应会增加乘员与膝盖安全气囊相互作用时下肢受伤的风险。

Active muscle response contributes to increased injury risk of lower extremity in occupant-knee airbag interaction.

作者信息

Nie Bingbing, Sathyanarayan Deepak, Ye Xin, Crandall Jeff R, Panzer Matthew B

机构信息

a Center for Applied Biomechanics, University of Virginia , Charlottesville , Virginia.

b State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering , Tsinghua University , Beijing , China.

出版信息

Traffic Inj Prev. 2018 Feb 28;19(sup1):S76-S82. doi: 10.1080/15389588.2017.1349898.

Abstract

OBJECTIVE

Recent field data analysis has demonstrated that knee airbags (KABs) can reduce occupant femur and pelvis injuries but may be insufficient to decrease leg injuries in motor vehicle crashes. An enhanced understanding of the associated injury mechanisms requires accurate assessment of physiological-based occupant parameters, some of which are difficult or impossible to obtain from experiments. This study sought to explore how active muscle response can influence the injury risk of lower extremities during KAB deployment using computational biomechanical analysis.

METHODS

A full-factorial matrix, consisting of 48 finite element simulations of a 50th percentile occupant human model in a simplified vehicle interior, was designed. The matrix included 32 new cases in combination with 16 previously reported cases. The following influencing factors were taken into account: muscle activation, KAB use, KAB design, pre-impact seating position, and crash mode. Responses of 32 lower extremity muscles during emergency braking were replicated using one-dimensional elements of a Hill-type constitutive model, with the activation level determined from inverse dynamics and validated by existing volunteer tests. Dynamics of unfolding and inflating of the KABs were represented using the state-of-the-art corpuscular particle method. Abbreviated Injury Scale (AIS) 2+ injury risks of the knee-thigh-hip (KTH) complex and the tibia were assessed using axial force and resultant bending moments. With all simulation cases being taken together, a general linear model was used to assess factor significance (P <.05).

RESULTS

As estimated by the regression model across all simulation cases, use of KABs significantly reduced axial femur forces by 4.74 ± 0.43 kN and AIS 2+ injury risk of KTH by 47 ± 6% (P <.05) but did not provide substantial change to injury risk of leg fractures. Muscle activation significantly increased axial force and bending moment of the femur (3.87 ± 0.38 kN and 64.3 ± 5.9 Nm), the tibia (1.49 ± 0.12 kN and 43.0 ± 6.4 Nm), and the resultant probability of AIS 2+ tibia injuries by 36 ± 6% regardless of KAB use and crash scenario. Specifically, when counting on a relative scale, muscle activation exhibited more prominent elevation of injury risk for in-position occupants than out-of-position occupants. In a representative crash scenario-that is, using a bottom-deployed KAB in a nearside oblique impact-muscle bracing of the right leg may lead to 2.6 times higher tibia fracture risk than being relaxed for an out-of-position occupant and 5.4 times higher for an in-position occupant.

DISCUSSION AND CONCLUSIONS

The mechanism of higher leg injuries in the presence of KAB deployment in real-world crashes can be interpreted by the increased effective body mass, axial compression along the shafts of long bones, and altered pre-impact posture due to muscle contraction. The present analysis suggests that active muscle response can increase the risk of lower extremity injury during occupant-KAB interaction. This study demonstrated the feasibility of advanced human models to investigate the influence of physiologically based parameters on injury outcomes evidenced in field study and insight from computational examination on human variability for development of future restraint systems. Future efforts are recommended on realistic vehicle and restraint environment and advanced modeling strategies toward a full understanding of KAB efficacy.

摘要

目的

最近的现场数据分析表明,膝部安全气囊(KABs)可减少驾乘人员的股骨和骨盆损伤,但在机动车碰撞事故中可能不足以降低腿部损伤。要更深入地了解相关损伤机制,需要准确评估基于生理的驾乘人员参数,其中一些参数很难或无法通过实验获得。本研究旨在通过计算生物力学分析,探讨主动肌肉反应如何在KAB展开过程中影响下肢的损伤风险。

方法

设计了一个全因子矩阵,包括在简化车辆内饰中对第50百分位驾乘人员人体模型进行的48次有限元模拟。该矩阵包括32个新案例以及16个先前报告的案例。考虑了以下影响因素:肌肉激活、KAB使用情况、KAB设计、碰撞前的坐姿以及碰撞模式。使用Hill型本构模型的一维单元复制紧急制动期间32条下肢肌肉的反应,激活水平由逆动力学确定,并通过现有的志愿者测试进行验证。使用最先进的微粒方法表示KAB展开和充气的动力学过程。使用轴向力和合成弯矩评估膝-大腿-髋(KTH)复合体和胫骨的简略损伤评分(AIS)2+及以上损伤风险。综合所有模拟案例,使用通用线性模型评估因素的显著性(P<.05)。

结果

根据所有模拟案例的回归模型估计,使用KAB可使股骨轴向力显著降低4.74±0.43 kN,KTH的AIS 2+及以上损伤风险降低47±6%(P<.05),但对腿部骨折的损伤风险没有实质性改变。肌肉激活显著增加了股骨的轴向力和弯矩(分别为3.87±0.38 kN和64.3±5.9 Nm)、胫骨的轴向力和弯矩(分别为1.49±0.12 kN和43.0±6.4 Nm),且无论是否使用KAB以及碰撞场景如何,AIS 2+及以上胫骨损伤的合成概率增加了36±6%。具体而言,按相对比例计算,肌肉激活对坐姿正确的驾乘人员造成的损伤风险升高比坐姿不正确的驾乘人员更为显著。在一个具有代表性的碰撞场景中,即在近侧斜向碰撞中使用底部展开的KAB,对于坐姿不正确的驾乘人员,右腿的肌肉支撑可能导致胫骨骨折风险比放松状态时高出2.6倍;对于坐姿正确的驾乘人员,该风险则高出5.4倍。

讨论与结论

在实际碰撞事故中,KAB展开时腿部受伤风险较高的机制可以通过有效体重增加、沿长骨骨干的轴向压缩以及肌肉收缩导致的碰撞前姿势改变来解释。目前的分析表明,主动肌肉反应会增加驾乘人员与KAB相互作用期间下肢受伤的风险。本研究证明了先进人体模型在研究基于生理的参数对现场研究中损伤结果的影响以及从计算检验中洞察人类变异性以开发未来约束系统方面的可行性。建议未来在逼真的车辆和约束环境以及先进建模策略方面做出努力,以全面了解KAB的功效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验