Suppr超能文献

蔗糖非发酵-1-激酶1(SnRK1)亚基KIN10参与蔗糖诱导的下胚轴伸长。

Involvement of the SnRK1 subunit KIN10 in sucrose-induced hypocotyl elongation.

作者信息

Simon Noriane M L, Sawkins Ellie, Dodd Antony N

机构信息

a School of Biological Sciences, University of Bristol , Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ , U.K.

出版信息

Plant Signal Behav. 2018;13(6):e1457913. doi: 10.1080/15592324.2018.1457913. Epub 2018 May 30.

Abstract

A mechanism participating in energy sensing and signalling in plants involves the regulation of sucrose non-fermenting1 (Snf1)-related protein kinase 1 (SnRK1) activity in response to sugar availability. SnRK1 is thought to regulate the activity of both metabolic enzymes and transcription factors in response to changes in energy availability, with trehalose-6-phospate functioning as a signalling sugar that suppresses SnRK1 activity under sugar-replete conditions. Sucrose supplementation increases the elongation of hypocotyls of developing Arabidopsis seedlings, and this response to sucrose involves both the SnRK1 subunit KIN10 and also TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1). Here, we measured sucrose-induced hypocotyl elongation in two insertional mutants of KIN10 (akin10 and akin10-2). Under short photoperiods, sucrose supplementation caused great proportional hypocotyl elongation in these KIN10 mutants compared with the wild type, and these mutants had shorter hypocotyls than the wild type in the absence of sucrose supplementation. One interpretation is that SnRK1 activity might suppress hypocotyl elongation in the presence of sucrose, because KIN10 overexpression inhibits sucrose-induced hypocotyl elongation and akin10 mutants enhance sucrose-induced hypocotyl elongation.

摘要

植物中参与能量感知和信号传导的一种机制涉及蔗糖非发酵1(Snf1)相关蛋白激酶1(SnRK1)活性的调节,以响应糖的可利用性。SnRK1被认为可响应能量可利用性的变化来调节代谢酶和转录因子的活性,其中海藻糖-6-磷酸作为一种信号糖,在糖充足的条件下抑制SnRK1活性。补充蔗糖可增加拟南芥发育幼苗下胚轴的伸长,这种对蔗糖的反应涉及SnRK1亚基KIN10以及海藻糖-6-磷酸合酶1(TPS1)。在此,我们测量了KIN10的两个插入突变体(akin10和akin10-2)中蔗糖诱导的下胚轴伸长。在短光周期下,与野生型相比,补充蔗糖导致这些KIN10突变体的下胚轴伸长比例更大,并且在不补充蔗糖的情况下,这些突变体的下胚轴比野生型短。一种解释是,在有蔗糖存在的情况下,SnRK1活性可能会抑制下胚轴伸长,因为KIN10过表达会抑制蔗糖诱导的下胚轴伸长,而akin10突变体则增强蔗糖诱导的下胚轴伸长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3618/6110359/4642ed776d25/kpsb-13-06-1457913-g001.jpg

相似文献

1
Involvement of the SnRK1 subunit KIN10 in sucrose-induced hypocotyl elongation.
Plant Signal Behav. 2018;13(6):e1457913. doi: 10.1080/15592324.2018.1457913. Epub 2018 May 30.
2
The Energy-Signaling Hub SnRK1 Is Important for Sucrose-Induced Hypocotyl Elongation.
Plant Physiol. 2018 Feb;176(2):1299-1310. doi: 10.1104/pp.17.01395. Epub 2017 Nov 7.
3
Trehalose-6-phosphate signaling regulates thermoresponsive hypocotyl growth in Arabidopsis thaliana.
EMBO Rep. 2019 Oct 4;20(10):e47828. doi: 10.15252/embr.201947828. Epub 2019 Aug 8.
4
Trehalose 6-Phosphate Positively Regulates Fatty Acid Synthesis by Stabilizing WRINKLED1.
Plant Cell. 2018 Oct;30(10):2616-2627. doi: 10.1105/tpc.18.00521. Epub 2018 Sep 24.
6
The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation.
Plant Physiol. 2013 Jul;162(3):1720-32. doi: 10.1104/pp.113.220657. Epub 2013 Jun 4.
7
A central integrator of transcription networks in plant stress and energy signalling.
Nature. 2007 Aug 23;448(7156):938-42. doi: 10.1038/nature06069. Epub 2007 Aug 1.
8
Coordinated Regulation of Hypocotyl Cell Elongation by Light and Ethylene through a Microtubule Destabilizing Protein.
Plant Physiol. 2018 Jan;176(1):678-690. doi: 10.1104/pp.17.01109. Epub 2017 Nov 22.

引用本文的文献

1
Mining and identification of factors influencing multi-branch plasticity in ornamental kale.
Planta. 2025 May 10;261(6):134. doi: 10.1007/s00425-025-04708-y.
2
The critical roles of three sugar-related proteins (HXK, SnRK1, TOR) in regulating plant growth and stress responses.
Hortic Res. 2024 Apr 4;11(6):uhae099. doi: 10.1093/hr/uhae099. eCollection 2024 Jun.
3
VvTOR interacts with VvSnRK1.1 and regulates sugar metabolism in grape.
Planta. 2022 Aug 6;256(3):56. doi: 10.1007/s00425-022-03969-1.
6
KIN10 promotes stomatal development through stabilization of the SPEECHLESS transcription factor.
Nat Commun. 2020 Aug 25;11(1):4214. doi: 10.1038/s41467-020-18048-w.
7
A role for Arabidopsis myosins in sugar-induced hypocotyl elongation.
MicroPubl Biol. 2020 Jul 10;2020. doi: 10.17912/micropub.biology.000276.
8
The Circadian Clock Influences the Long-Term Water Use Efficiency of Arabidopsis.
Plant Physiol. 2020 May;183(1):317-330. doi: 10.1104/pp.20.00030. Epub 2020 Mar 16.
9
Light Regulation of Axillary Bud Outgrowth Along Plant Axes: An Overview of the Roles of Sugars and Hormones.
Front Plant Sci. 2019 Oct 18;10:1296. doi: 10.3389/fpls.2019.01296. eCollection 2019.

本文引用的文献

1
The Energy-Signaling Hub SnRK1 Is Important for Sucrose-Induced Hypocotyl Elongation.
Plant Physiol. 2018 Feb;176(2):1299-1310. doi: 10.1104/pp.17.01395. Epub 2017 Nov 7.
2
The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light-dependent manner.
Plant Cell Environ. 2017 Jul;40(7):997-1008. doi: 10.1111/pce.12903. Epub 2017 Mar 27.
3
TOR Signaling Promotes Accumulation of BZR1 to Balance Growth with Carbon Availability in Arabidopsis.
Curr Biol. 2016 Jul 25;26(14):1854-60. doi: 10.1016/j.cub.2016.05.005. Epub 2016 Jun 23.
5
Brassinosteroid is required for sugar promotion of hypocotyl elongation in Arabidopsis in darkness.
Planta. 2015 Oct;242(4):881-93. doi: 10.1007/s00425-015-2328-y. Epub 2015 May 22.
6
The sucrose-trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P.
J Exp Bot. 2014 Mar;65(4):1051-68. doi: 10.1093/jxb/ert457. Epub 2014 Jan 13.
7
An endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation.
Plant Physiol. 2012 Dec;160(4):2261-70. doi: 10.1104/pp.112.205575. Epub 2012 Oct 16.
10
PIF genes mediate the effect of sucrose on seedling growth dynamics.
PLoS One. 2011;6(5):e19894. doi: 10.1371/journal.pone.0019894. Epub 2011 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验