Suppr超能文献

晚期肝细胞癌:索拉非尼治疗患者的预处理增强 CT 纹理参数作为生存预测生物标志物。

Advanced Hepatocellular Carcinoma: Pretreatment Contrast-enhanced CT Texture Parameters as Predictive Biomarkers of Survival in Patients Treated with Sorafenib.

机构信息

From the Service d'Imagerie Médicale (S.M., C.D., C.H.) and Service d'Hépato-Gastro-Entérologie et Cancérologie Digestive (G.T.), CHU Reims, 45 Rue Cognacq Jay, 51092 Reims, France; Service d'Hépatologie (C.C.) and Service d'Imagerie Médicale (A.R., A.L.), AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil Cedex, France; Faculté de Médecine, Université Paris Est Créteil, Créteil, France (A.R., A.L.); and CRESTIC, Université de Reims Champagne-Ardenne, Reims, France (C.H.).

出版信息

Radiology. 2018 Aug;288(2):445-455. doi: 10.1148/radiol.2018171320. Epub 2018 Mar 27.

Abstract

Purpose To determine whether texture features on pretreatment contrast material-enhanced computed tomographic (CT) images can help predict overall survival (OS) and time to progression (TTP) in patients with advanced hepatocellular carcinoma (HCC) treated with sorafenib. Materials and Methods This retrospective study included 92 patients with advanced HCC treated with sorafenib between January 2009 and April 2015 at two independent university hospitals. Sixty-four of the 92 patients (70%) (six women, 58 men; median age, 66 years) were included from institution 1 and constituted a training cohort; 28 patients (30%) (five women, 23 men; median age, 64 years) were included from institution 2 and constituted a validation cohort. Pretreatment CT texture analysis was performed on late arterial and portal venous phase HCC images. Mean gray-level intensity, entropy, kurtosis, skewness, and standard deviation values were derived from the pixel distribution histogram before and after spatial filtration at different anatomic scales ranging from fine to coarse texture. Lesion heterogeneity was also visually graded on a 4-point scale. Correlations between visual analysis and texture parameters were assessed with the Spearman rank correlation. Univariate Kaplan-Meier and multivariate Cox proportional hazards regression analyses were performed in the training cohort to identify independent predictors of OS and TTP. Their predictive capacity was tested on the validation cohort by using Kaplan-Meier analysis. Results Visual analysis of tumor heterogeneity correlated with entropy at both arterial (P = .012) and portal venous (P = .038) phases. Portal phase-derived entropy at fine (hazard ratio [HR], 5.08; P = .0033), medium (HR, 2.23; P = .019), and coarse (HR, 2.26; P = .0032) texture scales was identified as an independent predictor of OS and confirmed in the validation cohort (P < .05). The difference in median survival between patients in the validation cohort with entropy values below and above the identified threshold was 272 days (with fine texture) and 741 days (with medium and coarse textures). Arterial phase-derived texture parameters (P > .085) and visual analysis (P > .11) were not associated with changes in survival. Conclusion Pretreatment portal venous phase-derived tumor entropy may be a predictor of survival in patients with advanced HCC treated with sorafenib.

摘要

目的

旨在确定在接受索拉非尼治疗的晚期肝细胞癌(HCC)患者中,预处理对比增强 CT 图像上的纹理特征是否有助于预测总生存期(OS)和无进展生存期(TTP)。

材料与方法

本回顾性研究纳入了 2009 年 1 月至 2015 年 4 月在两家独立大学医院接受索拉非尼治疗的 92 例晚期 HCC 患者。92 例患者中有 64 例(70%)(6 例女性,58 例男性;中位年龄 66 岁)来自机构 1,构成训练队列;28 例(30%)(5 例女性,23 例男性;中位年龄 64 岁)来自机构 2,构成验证队列。对 HCC 患者的晚期动脉期和门静脉期 CT 图像进行纹理分析。在不同的解剖尺度(从精细到粗糙纹理)上,从像素分布直方图中提取出灰度均值、熵、峰度、偏度和标准差值。病变异质性也采用 4 分制进行视觉分级。采用 Spearman 秩相关评估视觉分析与纹理参数之间的相关性。采用单因素 Kaplan-Meier 和多因素 Cox 比例风险回归分析在训练队列中识别 OS 和 TTP 的独立预测因素,并采用 Kaplan-Meier 分析在验证队列中进行测试。

结果

肿瘤异质性的视觉分析与动脉期(P =.012)和门静脉期(P =.038)的熵相关。在精细(HR,5.08;P =.0033)、中等(HR,2.23;P =.019)和粗糙(HR,2.26;P =.0032)纹理尺度下,门静脉期衍生的熵被确定为 OS 的独立预测因素,并在验证队列中得到证实(P <.05)。验证队列中熵值低于和高于确定阈值的患者的中位生存时间差异为 272 天(精细纹理)和 741 天(中、粗纹理)。动脉期衍生的纹理参数(P >.085)和视觉分析(P >.11)与生存变化无关。

结论

在接受索拉非尼治疗的晚期 HCC 患者中,预处理门静脉期衍生的肿瘤熵可能是生存的预测因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验