Suppr超能文献

在氮掺杂活性炭上通过液相等离子体合成氧化铁纳米颗粒用于超级电容器应用的纳米复合材料。

Liquid Phase Plasma Synthesis of Iron Oxide Nanoparticles on Nitrogen-Doped Activated Carbon Resulting in Nanocomposite for Supercapacitor Applications.

作者信息

Lee Heon, Lee Won-June, Park Young-Kwon, Ki Seo Jin, Kim Byung-Joo, Jung Sang-Chul

机构信息

Department of Environmental Engineering, Sunchon National University, Suncheon 57922, Korea.

School of Environmental Engineering, University of Seoul, Seoul 02504, Korea.

出版信息

Nanomaterials (Basel). 2018 Mar 25;8(4):190. doi: 10.3390/nano8040190.

Abstract

Iron oxide nanoparticles supported on nitrogen-doped activated carbon powder were synthesized using an innovative plasma-in-liquid method, called the liquid phase plasma (LPP) method. Nitrogen-doped carbon (NC) was prepared by a primary LPP reaction using an ammonium chloride reactant solution, and an iron oxide/NC composite (IONCC) was prepared by a secondary LPP reaction using an iron chloride reactant solution. The nitrogen component at 3.77 at. % formed uniformly over the activated carbon (AC) surface after a 1 h LPP reaction. Iron oxide nanoparticles, 40~100 nm in size, were impregnated homogeneously over the NC surface after the LPP reaction, and were identified as Fe₃O₄ by X-ray photoelectron spectroscopy and X-ray diffraction. NC and IONCCs exhibited pseudo-capacitive characteristics, and their specific capacitance and cycling stability were superior to those of bare AC. The nitrogen content on the NC surface increased the compatibility and charge transfer rate, and the composites containing iron oxide exhibited a lower equivalent series resistance.

摘要

采用一种创新的液中等离子体方法,即液相等离子体(LPP)法,合成了负载在氮掺杂活性炭粉末上的氧化铁纳米颗粒。通过使用氯化铵反应物溶液的一次LPP反应制备氮掺杂碳(NC),并通过使用氯化铁反应物溶液的二次LPP反应制备氧化铁/NC复合材料(IONCC)。在1小时的LPP反应后,3.77原子%的氮组分均匀地形成在活性炭(AC)表面。尺寸为40~100nm的氧化铁纳米颗粒在LPP反应后均匀地浸渍在NC表面,并通过X射线光电子能谱和X射线衍射鉴定为Fe₃O₄。NC和IONCC表现出赝电容特性,其比电容和循环稳定性优于裸AC。NC表面的氮含量提高了兼容性和电荷转移速率,含氧化铁的复合材料表现出较低的等效串联电阻。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e66/5923520/7fcf5cf7e9a5/nanomaterials-08-00190-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验