a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia.
Free Radic Res. 2018 May;52(5):507-543. doi: 10.1080/10715762.2018.1457217. Epub 2018 Apr 19.
Over the last decade, a dual character of cell response to oxidative stress, eustress versus distress, has become increasingly recognized. A growing body of evidence indicates that under physiological conditions, low concentrations of reactive oxygen and nitrogen species (RONS) maintained by the activity of endogenous antioxidant system (AOS) allow reversible oxidative/nitrosative modifications of key redox-sensitive residues in regulatory proteins. The reversibility of redox modifications such as Cys S-sulphenylation/S-glutathionylation/S-nitrosylation/S-persulphidation and disulphide bond formation, or Tyr nitration, which occur through electrophilic attack of RONS to nucleophilic groups in amino acid residues provides redox switches in the activities of signalling proteins. Key requirement for the involvement of the redox modifications in RONS signalling including ROS-MAPK, ROS-PI3K/Akt, and RNS-TNF-α/NF-kB signalling is their specificity provided by a residue microenvironment and reaction kinetics. Glutathione, glutathione peroxidases, peroxiredoxins, thioredoxin, glutathione reductases, and glutaredoxins modulate RONS level and cell signalling, while some of the modulators (glutathione, glutathione peroxidases and peroxiredoxins) are themselves targets for redox modifications. Additionally, gene expression, activities of transcription factors, and epigenetic pathways are also under redox regulation. The present review focuses on RONS sources (NADPH-oxidases, mitochondrial electron-transportation chain (ETC), nitric oxide synthase (NOS), etc.), and their cross-talks, which influence reversible redox modifications of proteins as physiological phenomenon attained by living cells during the evolution to control cell signalling in the oxygen-enriched environment. We discussed recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases.
在过去的十年中,细胞对氧化应激的反应具有双重特性,即适应应激和压力应激,这一观点已逐渐得到认可。越来越多的证据表明,在生理条件下,内源性抗氧化系统 (AOS) 活性维持的低浓度活性氧和氮物种 (RONS) 允许关键氧化还原敏感残基在调节蛋白中发生可逆的氧化/硝化修饰。氧化还原修饰的可逆性,如半胱氨酸的 S-亚磺酰化/S-谷胱甘肽化/S-亚硝基化/S-过硫化以及二硫键的形成,或酪氨酸的硝化,这些修饰是通过 RONS 对氨基酸残基中亲核基团的亲电攻击而发生的,为信号蛋白的活性提供了氧化还原开关。氧化还原修饰(包括 ROS-MAPK、ROS-PI3K/Akt 和 RNS-TNF-α/NF-κB 信号通路)参与 RONS 信号转导的关键要求是其由残基微环境和反应动力学提供的特异性。谷胱甘肽、谷胱甘肽过氧化物酶、过氧化物酶体、硫氧还蛋白、谷胱甘肽还原酶和谷氧还蛋白调节 RONS 水平和细胞信号转导,而一些调节剂(谷胱甘肽、谷胱甘肽过氧化物酶和过氧化物酶体)本身也是氧化还原修饰的靶标。此外,基因表达、转录因子活性和表观遗传途径也受到氧化还原调节。本综述重点介绍了 RONS 的来源(NADPH 氧化酶、线粒体电子传递链 (ETC)、一氧化氮合酶 (NOS) 等)及其相互作用,这些来源和相互作用影响蛋白质的可逆氧化还原修饰,这是进化过程中富含氧气的环境下活细胞控制细胞信号转导的生理现象。我们讨论了近年来在研究蛋白质氧化还原修饰和适应性氧化还原开关(如 MAPK/PI3K/PTEN、Nrf2/Keap1 和 NF-κB/IκB)机制方面的进展,这些开关是许多生理过程的强大调节剂,也与各种疾病有关。