ICFO- Institut de Ciencies Fotoniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels (Barcelona) , Spain.
IDIBELL-Institut d'Investigació Biomèdica de Bellvitge , Av. Castelldefels, Km 2.7 , 08907 L'Hospitalet de Llobregat, Barcelona , Spain.
Anal Chem. 2018 May 1;90(9):5594-5602. doi: 10.1021/acs.analchem.7b04527. Epub 2018 Apr 10.
Raman spectroscopy (RS) has shown promise as a tool to reveal biochemical changes that occur in cancer processes at the cellular level. However, when analyzing clinical samples, RS requires improvements to be able to resolve biological components from the spectra. We compared the strengths of Multivariate Curve Resolution (MCR) versus Principal Component Analysis (PCA) to deconvolve meaningful biological components formed by distinct mixtures of biological molecules from a set of mixed spectra. We exploited the flexibility of the MCR algorithm to easily accommodate different initial estimates and constraints. We demonstrate the ability of MCR to resolve undesired background signals from the RS that can be subtracted to obtain clearer cancer cell spectra. We used two triple negative breast cancer cell lines, MDA-MB 231 and MDA-MB 435, to illustrate the insights obtained by RS that infer the metabolic changes required for metastasis progression. Our results show that increased levels of amino acids and lower levels of mitochondrial signals are attributes of bone metastatic cells, whereas lung metastasis tropism is characterized by high lipid and mitochondria levels. Therefore, we propose a method based on the MCR algorithm to achieve unique biochemical insights into the molecular progression of cancer cells using RS.
拉曼光谱(RS)已显示出作为一种工具的潜力,可以揭示细胞水平上癌症过程中发生的生化变化。然而,在分析临床样本时,RS 需要改进,以便能够从光谱中分辨出生物成分。我们比较了多元曲线分辨(MCR)与主成分分析(PCA)的优势,以从一组混合光谱中解卷积由不同生物分子混合物形成的有意义的生物成分。我们利用 MCR 算法的灵活性,轻松适应不同的初始估计和约束。我们证明了 MCR 能够从 RS 中消除不需要的背景信号,从而可以减去这些信号以获得更清晰的癌细胞光谱。我们使用了两种三阴性乳腺癌细胞系 MDA-MB 231 和 MDA-MB 435,来说明 RS 推断出转移进展所需的代谢变化所获得的见解。我们的结果表明,氨基酸水平升高和线粒体信号水平降低是骨转移细胞的特征,而肺转移倾向的特征是脂质和线粒体水平高。因此,我们提出了一种基于 MCR 算法的方法,使用 RS 获得对癌细胞分子进展的独特生化见解。