Suppr超能文献

巨正则晶体生长的同类相食方法。

A Cannibalistic Approach to Grand Canonical Crystal Growth.

机构信息

Department of Chemistry and Applied Biosciences , ETH Zurich , c/o USI Campus, Via Giuseppe Buffi 13 , CH-6900 , Lugano , Ticino , Switzerland.

Facoltià di Informatica, Instituto di Scienze Computationali , Università della Svizzera Italiana (USI) , Via Giuseppe Buffi 13 , CH-6900 , Lugano , Ticino , Switzerland.

出版信息

J Chem Theory Comput. 2018 May 8;14(5):2678-2683. doi: 10.1021/acs.jctc.8b00191. Epub 2018 Apr 4.

Abstract

Canonical molecular dynamics simulations of crystal growth from solution suffer from severe finite-size effects. As the crystal grows, the solute molecules are drawn from the solution to the crystal, leading to a continuous drop in the solution concentration. This is in contrast to experiments in which the crystal grows at an approximately constant supersaturation of a bulk solution. Recently, Perego et al. [ J. Chem. Phys. 2015, 142, 144113] showed that in a periodic setup in which the crystal is represented as a slab, the concentration in the vicinity of the two surfaces can be kept constant while the molecules are drawn from a part of the solution that acts as a molecular reservoir. This method is quite effective in studying crystallization under controlled supersaturation conditions. However, once the reservoir is depleted, the constant supersaturation conditions cannot be maintained. We propose a variant of this method to tackle this depletion problem by simultaneously dissolving one side of the crystal while letting the other side grow. A continuous supply of particles to the solution due to the crystal dissolution maintains a steady solution concentration and avoids reservoir depletion. In this way, a constant supersaturation condition can be maintained for as long as necessary. We have applied this method to study the growth and dissolution of urea crystal from water solution under constant supersaturation and undersaturation conditions, respectively. The computed growth and dissolution rates are in good agreement with those obtained in previous studies.

摘要

从溶液中进行晶体生长的典型分子动力学模拟受到严重的有限尺寸效应的影响。随着晶体的生长,溶质分子从溶液中被拉到晶体中,导致溶液浓度持续下降。这与实验形成对比,在实验中,晶体在本体溶液的近似恒定过饱和度下生长。最近,Perego 等人[J. Chem. Phys. 2015, 142, 144113]表明,在一个周期性的设置中,其中晶体表示为一个薄片,在从作为分子储库的溶液的一部分中拉分子的同时,可以保持两个表面附近的浓度恒定。该方法在研究控制过饱和度条件下的结晶时非常有效。然而,一旦储库耗尽,就无法维持恒定的过饱和度条件。我们提出了该方法的一个变体,通过同时溶解晶体的一侧,同时让另一侧生长,来解决这个耗尽问题。由于晶体的溶解,粒子不断地供应到溶液中,保持了稳定的溶液浓度,避免了储库的耗尽。通过这种方式,可以在需要的时间内维持恒定的过饱和度条件。我们已经应用该方法来研究在恒定过饱和度和过饱和度条件下,尿素晶体从水溶液中的生长和解体。计算得到的生长和解体速率与先前研究中获得的结果非常吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验