Sturluson Arni, Huynh Melanie T, Kaija Alec R, Laird Caleb, Yoon Sunghyun, Hou Feier, Feng Zhenxing, Wilmer Christopher E, Colón Yamil J, Chung Yongchul G, Siderius Daniel W, Simon Cory M
School of Chemical, Biological, and Environmental Engineering, Oregon State University. Corvallis, OR, USA.
Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
Mol Simul. 2019;45. doi: 10.1080/08927022.2019.1648809.
Metal-organic frameworks (MOFs) are highly tuneable, extended-network, crystalline, nanoporous materials with applications in gas storage, separations, and sensing. We review how molecular models and simulations of gas adsorption in MOFs have informed the discovery of performant MOFs for methane, hydrogen, and oxygen storage, xenon, carbon dioxide, and chemical warfare agent capture, and xylene enrichment. Particularly, we highlight how large, open databases of MOF crystal structures, post-processed to enable molecular simulations, are a platform for computational materials discovery. We discuss how to orient research efforts to routinise the computational discovery of MOFs for adsorption-based engineering applications.
金属有机框架材料(MOFs)是具有高度可调节性的、扩展网络状的、晶体状的纳米多孔材料,在气体存储、分离和传感领域有应用。我们综述了MOFs中气体吸附的分子模型和模拟如何为发现用于甲烷、氢气和氧气存储、氙气、二氧化碳和化学战剂捕获以及二甲苯富集的高性能MOFs提供了信息。特别地,我们强调了经过后处理以实现分子模拟的大型MOF晶体结构开放数据库如何成为计算材料发现的平台。我们讨论了如何调整研究工作方向,以便将MOFs的计算发现常规化,用于基于吸附的工程应用。