1 Department of Microbiology and Cell Science, University of Florida , Merritt Island, Florida, USA .
2 Department of Plant Pathology, University of Florida , Merritt Island, Florida, USA .
Astrobiology. 2018 Apr;18(4):393-402. doi: 10.1089/ast.2017.1721. Epub 2018 Mar 28.
DNA is considered a potential biomarker for life-detection experiments destined for Mars. Experiments were conducted to examine the photochemistry of bacterial DNA, either unprotected or within Bacillus subtilis spores, in response to exposure to simulated martian surface conditions consisting of the following: temperature (-10°C), pressure (0.7 kPa), atmospheric composition [CO (95.54%), N (2.7%), Ar (1.6%), O (0.13%), and HO (0.03%)], and UV-visible-near IR solar radiation spectrum (200-1100 nm) calibrated to 4 W/m of UVC (200-280 nm). While the majority (99.9%) of viable spores deposited in multiple layers on spacecraft-qualified aluminum coupons were inactivated within 5 min, a detectable fraction survived for up to the equivalent of ∼115 martian sols. Spore photoproduct (SP) was the major lesion detected in spore DNA, with minor amounts of cyclobutane pyrimidine dimers (CPD), in the order TT CPD > TC CPD >> CT CPD. In addition, the (6-4)TC, but not the (6-4)TT, photoproduct was detected in spore DNA. When unprotected DNA was exposed to simulated martian conditions, all photoproducts were detected. Surprisingly, the (6-4)TC photoproduct was the major photoproduct, followed by SP ∼ TT CPD > TC CPD > (6-4)TT > CT CPD > CC CPD. Differences in the photochemistry of unprotected DNA and spore DNA in response to simulated martian surface conditions versus laboratory conditions are reviewed and discussed. The results have implications for the planning of future life-detection experiments that use DNA as the target, and for the long-term persistence on Mars of forward contaminants or their DNA. Key Words: Bacillus subtilis-DNA-Mars-Photochemistry-Spore-Ultraviolet. Astrobiology 18, 393-402.
DNA 被认为是火星生命探测实验的潜在生物标志物。进行了实验以研究细菌 DNA 的光化学反应,无论是未受保护的 DNA 还是枯草芽孢杆菌孢子内的 DNA,以响应暴露于以下组成的模拟火星表面条件:温度(-10°C)、压力(0.7 kPa)、大气成分[CO(95.54%)、N(2.7%)、Ar(1.6%)、O(0.13%)和 HO(0.03%)]和 UV-可见-近红外太阳辐射光谱(200-1100nm)校准为 4 W/m 的 UVC(200-280nm)。虽然在航天器合格的铝制优惠券上多层沉积的大多数(99.9%)有活力的孢子在 5 分钟内失活,但可检测到的孢子在相当于大约 115 个火星日的时间内存活下来。在孢子 DNA 中检测到的主要光产物(SP)是在孢子 DNA 中检测到的主要光产物,其中少量的环丁烷嘧啶二聚体(CPD),顺序为 TT CPD>TC CPD>>CT CPD。此外,在孢子 DNA 中检测到(6-4)TC,但未检测到(6-4)TT 光产物。当未受保护的 DNA 暴露于模拟的火星条件时,检测到所有光产物。令人惊讶的是,(6-4)TC 光产物是主要的光产物,其次是 SP∼TT CPD>TC CPD>(6-4)TT>CT CPD>CC CPD。对未受保护的 DNA 和孢子 DNA 在模拟火星表面条件与实验室条件下的光化学反应的差异进行了审查和讨论。结果对使用 DNA 作为目标的未来生命探测实验的规划以及对火星上的前向污染物或其 DNA 的长期持久性具有重要意义。关键词:枯草芽孢杆菌-DNA-火星-光化学-孢子-紫外线。天体生物学 18, 393-402。