van Galen P J, Ijzerman A P, Soudijn W
Division of Medicinal Chemistry, Center for Bio-Pharmaceutical Sciences, Leiden, The Netherlands.
FEBS Lett. 1987 Oct 19;223(1):197-201. doi: 10.1016/0014-5793(87)80535-5.
Three series of N6-substituted adenosine derivatives were synthesized, having in common an unbranched alkyl chain with lengths varying from 2 to 12 methylene units, but differing in their omega-alkyl substituents: N6-n-alkyladenosines (I), N6-omega-amino-alkyladenosines (II) and alpha omega,di-(adenosin-N6-yl)alkanes (III). The compounds of the latter series combine two functional groups in one molecule. A1-receptor affinity of these compounds was measured as inhibition of [3H]PIA binding to calf brain membranes. With relatively short chain lengths, compounds in series I are the most potent. In this series, optimum activity is reached with N6-n-pentyladenosine (Ki = 0.50 nM). With short chain lengths, compounds in series II and III are 6-20-fold less potent than their congeners in series I. The potency order however is reversed with higher chain lengths. While affinity in series II and III increases strongly, reaching an optimum with the nonyl derivatives, affinity in series I decreases sharply with alkyl chains larger than 8 methylene units. Highest affinity is found with 9-amino-nonyladenosine (Ki = 0.32 nM). In general, the omega-aminoalkyl derivatives are somewhat more potent than the corresponding di-adenosinyl derivatives. Implications for the possible topography of the N6 region of the A1-receptor and the area further removed from N6 are discussed.