Intheon Labs, San Diego, CA, USA; Electrical & Computer Engineering Department, University of California San Diego, La Jolla, CA, USA.
Electrical & Computer Engineering Department, University of California San Diego, La Jolla, CA, USA.
Neuroimage. 2018 Jul 1;174:449-462. doi: 10.1016/j.neuroimage.2018.03.048. Epub 2018 Mar 27.
We propose a new Sparse Bayesian Learning (SBL) algorithm that can deliver fast, block-sparse, and robust solutions to the EEG source imaging (ESI) problem in the presence of noisy measurements. Current implementations of the SBL framework are computationally expensive and typically handle fluctuations in the measurement noise using different heuristics that are unsuitable for real-time imaging applications. We address these shortcomings by decoupling the estimation of the sensor noise covariance and the sparsity profile of the sources, thereby yielding an efficient two-stage algorithm. In the first stage, we optimize a simplified non-sparse generative model to get an estimate of the sensor noise covariance and a good initialization of the group-sparsity profile of the sources. Sources obtained at this stage are equivalent to those estimated with the popular inverse method LORETA. In the second stage, we apply a fast SBL algorithm with the noise covariance fixed to the value obtained in the first stage to efficiently shrink to zero groups of sources that are irrelevant for explaining the EEG measurements. In addition, we derive an initialization to the first stage of the algorithm that is optimal in the least squares sense, which prevents delays due to suboptimal initial conditions. We validate our method on both simulated and real EEG data. Simulations show that the method is robust to measurement noise and performs well in real-time, with faster performance than two state of the art SBL solvers. On real error-related negativity EEG data, we obtain source images in agreement with the experimental literature. The method shows promise for real-time neuroimaging and brain-machine interface applications.
我们提出了一种新的稀疏贝叶斯学习(SBL)算法,该算法可以在存在噪声测量的情况下,快速、块稀疏、稳健地解决 EEG 源成像(ESI)问题。当前 SBL 框架的实现计算成本很高,并且通常使用不适合实时成像应用的不同启发式方法来处理测量噪声的波动。我们通过解耦传感器噪声协方差和源的稀疏度分布的估计,从而产生一种高效的两阶段算法来解决这些缺点。在第一阶段,我们优化一个简化的非稀疏生成模型,以获得传感器噪声协方差的估计值和源的群稀疏度分布的良好初始化。在这个阶段获得的源与使用流行的逆方法 LORETA 估计的源等效。在第二阶段,我们应用一个带有固定在第一阶段获得的噪声协方差的快速 SBL 算法,以有效地将与解释 EEG 测量无关的源组收缩为零。此外,我们为算法的第一阶段推导出一个在最小二乘意义上是最优的初始化,这可以防止由于初始条件不佳而导致的延迟。我们在模拟和真实 EEG 数据上验证了我们的方法。模拟结果表明,该方法对测量噪声具有鲁棒性,并且能够实时快速运行,性能优于两种最先进的 SBL 求解器。在真实的错误相关负性 EEG 数据上,我们获得的源图像与实验文献一致。该方法有望用于实时神经成像和脑机接口应用。